scholarly journals Duality for Outer $$L^p_\mu (\ell ^r)$$ Spaces and Relation to Tent Spaces

2021 ◽  
Vol 27 (4) ◽  
Author(s):  
Marco Fraccaroli

AbstractWe study the outer $$L^p$$ L p spaces introduced by Do and Thiele on sets endowed with a measure and an outer measure. We prove that, in the case of finite sets, for $$1< p \leqslant \infty , 1 \leqslant r < \infty $$ 1 < p ⩽ ∞ , 1 ⩽ r < ∞ or $$p=r \in \{ 1, \infty \}$$ p = r ∈ { 1 , ∞ } , the outer $$L^p_\mu (\ell ^r)$$ L μ p ( ℓ r ) quasi-norms are equivalent to norms up to multiplicative constants uniformly in the cardinality of the set. This is obtained by showing the expected duality properties between the corresponding outer $$L^p_\mu (\ell ^r)$$ L μ p ( ℓ r ) spaces uniformly in the cardinality of the set. Moreover, for $$p=1, 1 < r \leqslant \infty $$ p = 1 , 1 < r ⩽ ∞ , we exhibit a counterexample to the uniformity in the cardinality of the finite set. We also show that in the upper half space setting the desired properties hold true in the full range $$1 \leqslant p,r \leqslant \infty $$ 1 ⩽ p , r ⩽ ∞ . These results are obtained via greedy decompositions of functions in the outer $$L^p_\mu (\ell ^r)$$ L μ p ( ℓ r ) spaces. As a consequence, we establish the equivalence between the classical tent spaces $$T^p_r$$ T r p and the outer $$L^p_\mu (\ell ^r)$$ L μ p ( ℓ r ) spaces in the upper half space. Finally, we give a full classification of weak and strong type estimates for a class of embedding maps to the upper half space with a fractional scale factor for functions on $$\mathbb {R}^d$$ R d .

10.37236/4972 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Bernardo M. Ábrego ◽  
Silvia Fernández-Merchant ◽  
Daniel J. Katz ◽  
Levon Kolesnikov

New bounds on the number of similar or directly similar copies of a pattern within a finite subset of the line or the plane are proved. The number of equilateral triangles whose vertices all lie within an $n$-point subset of the plane is shown to be no more than $\lfloor{(4 n-1)(n-1)/18}\rfloor$. The number of $k$-term arithmetic progressions that lie within an $n$-point subset of the line is shown to be at most $(n-r)(n+r-k+1)/(2 k-2)$, where $r$ is the remainder when $n$ is divided by $k-1$. This upper bound is achieved when the $n$ points themselves form an arithmetic progression, but for some values of $k$ and $n$, it can also be achieved for other configurations of the $n$ points, and a full classification of such optimal configurations is given. These results are achieved using a new general method based on ordering relations.


2006 ◽  
Vol 05 (03) ◽  
pp. 361-377 ◽  
Author(s):  
CLAUDE CIBILS

We classify the twisted tensor products of a finite set algebra with a two elements set algebra using colored quivers obtained through considerations analogous to Ore extensions. This provides also a classification of entwining structures between a finite set algebra and the grouplike coalgebra on two elements. The resulting 2-nilpotent algebras have particular features with respect to Hochschild (co)homology and cyclic homology.


1978 ◽  
Vol 43 (4) ◽  
pp. 694-714 ◽  
Author(s):  
Nancy Johnson

The Rice-Shapiro Theorem [4] says that the index set of a class of recursively enumerable (r.e.) sets is r.e. if and only if consists of all sets which extend an element of a canonically enumerable sequence of finite sets. If an index of a difference of r.e. (d.r.e.) sets is defined to be the pair of indices of the r.e. sets of which it is the difference, then the following generalization due to Hay [3] is obtained: The index set of a class of d.r.e. sets is d.r.e. if and only if is empty or consists of all sets which extend a single fixed finite set. In that paper Hay also classifies index sets of classes consisting of d.r.e. sets which extend one of a finite collection of finite sets. These sets turn out to be finite Boolean combinations of r.e. sets. The question then arises “What about the classification of the index set of a class consisting of d.r.e. sets which extend an element of a canonically enumerable sequence of finite sets?” The results in this paper come from an attempt to answer this question.Since classes of sets which are Boolean combinations of r.e. sets form a hierarchy (the finite Ershov hierarchy, see Ershov [1]) with the r.e. and d.r.e. sets respectively levels 1 and 2 of this hierarchy, we may define index sets of classes of level n sets. If is a class of level n sets which extend some element of a canonically enumerable sequence of finite sets and if we let co-, then we extend the original classification question to the classification of the index sets of the classes and co-.Now if the sequence of finite sets enumerates only finitely many sets or if only finitely many of the finite sets are minimal under inclusion, then it is a routine computation to verify that the index sets of and co- are in the finite Ershov hierarchy. Thus we are interested in the case in which infinitely many of the sequence of finite sets are minimal under inclusion. However if the infinite sequence is fairly simple, for instance{0}, {1}, {2}, … then the r.e. index set of co- is Σ20-complete as well as the index sets of and co- for all levels n > 2. Since the finite Ershov hierarchy does not exhaust ⊿20 there is a lot of “room” between these two extreme cases.


2020 ◽  
Vol 23 (4) ◽  
pp. 641-658
Author(s):  
Gunnar Traustason ◽  
James Williams

AbstractIn this paper, we continue the study of powerfully nilpotent groups. These are powerful p-groups possessing a central series of a special kind. To each such group, one can attach a powerful nilpotency class that leads naturally to the notion of a powerful coclass and classification in terms of an ancestry tree. In this paper, we will give a full classification of powerfully nilpotent groups of rank 2. The classification will then be used to arrive at a precise formula for the number of powerfully nilpotent groups of rank 2 and order {p^{n}}. We will also give a detailed analysis of the ancestry tree for these groups. The second part of the paper is then devoted to a full classification of powerfully nilpotent groups of order up to {p^{6}}.


2020 ◽  
Vol 65 (6) ◽  
pp. 693-704
Author(s):  
Rafik Djemili

AbstractEpilepsy is a persistent neurological disorder impacting over 50 million people around the world. It is characterized by repeated seizures defined as brief episodes of involuntary movement that might entail the human body. Electroencephalography (EEG) signals are usually used for the detection of epileptic seizures. This paper introduces a new feature extraction method for the classification of seizure and seizure-free EEG time segments. The proposed method relies on the empirical mode decomposition (EMD), statistics and autoregressive (AR) parameters. The EMD method decomposes an EEG time segment into a finite set of intrinsic mode functions (IMFs) from which statistical coefficients and autoregressive parameters are computed. Nevertheless, the calculated features could be of high dimension as the number of IMFs increases, the Student’s t-test and the Mann–Whitney U test were thus employed for features ranking in order to withdraw lower significant features. The obtained features have been used for the classification of seizure and seizure-free EEG signals by the application of a feed-forward multilayer perceptron neural network (MLPNN) classifier. Experimental results carried out on the EEG database provided by the University of Bonn, Germany, demonstrated the effectiveness of the proposed method which performance assessed by the classification accuracy (CA) is compared to other existing performances reported in the literature.


2016 ◽  
Vol 15 (05) ◽  
pp. 731-770 ◽  
Author(s):  
D. P. Hewett ◽  
A. Moiola

This paper concerns the following question: given a subset [Formula: see text] of [Formula: see text] with empty interior and an integrability parameter [Formula: see text], what is the maximal regularity [Formula: see text] for which there exists a non-zero distribution in the Bessel potential Sobolev space [Formula: see text] that is supported in [Formula: see text]? For sets of zero Lebesgue measure, we apply well-known results on set capacities from potential theory to characterize the maximal regularity in terms of the Hausdorff dimension of [Formula: see text], sharpening previous results. Furthermore, we provide a full classification of all possible maximal regularities, as functions of [Formula: see text], together with the sets of values of [Formula: see text] for which the maximal regularity is attained, and construct concrete examples for each case. Regarding sets with positive measure, for which the maximal regularity is non-negative, we present new lower bounds on the maximal Sobolev regularity supported by certain fat Cantor sets, which we obtain both by capacity-theoretic arguments, and by direct estimation of the Sobolev norms of characteristic functions. We collect several results characterizing the regularity that can be achieved on certain special classes of sets, such as [Formula: see text]-sets, boundaries of open sets, and Cartesian products, of relevance for applications in differential and integral equations.


1956 ◽  
Vol 21 (3) ◽  
pp. 304-308 ◽  
Author(s):  
H. G. Rice

The two results of this paper (a theorem and an example) are applications of a device described in section 1. Our notation is that of [4], with which we assume familiarity. It may be worth while to mention in particular the function Φ(n, x) which recursively enumerates the partial recursive functions of one variable, the Cantor enumerating functions J(x, y), K(x), L(x), and the classes F and Q of r.e. (recursively enumerable) and finite sets respectively.It is possible to “give” a finite set in a way which conveys the maximum amount of information; this may be called “giving explicitly”, and it requires that in addition to an effective enumeration or decision procedure for the set we give its cardinal number. It is sometimes desired to enumerate effectively an infinite class of finite sets, each given explicitly (e.g., [4] p. 360, or Dekker [1] p. 497), and we suggest here a device for doing this.We set up an effective one-to-one correspondence between the finite sets of non-negative integers and these integers themselves: the integer , corresponds to the set αi, = {a1, a2, …, an} and inversely. α0 is the empty set. Clearly i can be effectively computed from the elements of αi and its cardinal number.


Axioms ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 72
Author(s):  
Mohamed Tahar Kadaoui Abbassi ◽  
Noura Amri

In this paper, we study natural paracontact magnetic trajectories in the unit tangent bundle, i.e., those that are associated to g-natural paracontact metric structures. We characterize slant natural paracontact magnetic trajectories as those satisfying a certain conservation law. Restricting to two-dimensional base manifolds of constant Gaussian curvature and to Kaluza–Klein type metrics on their unit tangent bundles, we give a full classification of natural paracontact slant magnetic trajectories (and geodesics).


2021 ◽  
Vol 13(62) (2) ◽  
pp. 451-462
Author(s):  
Lakehal Belarbi

In this work we consider the three-dimensional generalized symmetric space, equipped with the left-invariant pseudo-Riemannian metric. We determine Killing vector fields and affine vectors fields. Also we obtain a full classification of Ricci, curvature and matter collineations


Author(s):  
Joaquín Moraga

Abstract In this article, we prove a local implication of boundedness of Fano varieties. More precisely, we prove that $d$ -dimensional $a$ -log canonical singularities with standard coefficients, which admit an $\epsilon$ -plt blow-up, have minimal log discrepancies belonging to a finite set which only depends on $d,\,a$ and $\epsilon$ . This result gives a natural geometric stratification of the possible mld's in a fixed dimension by finite sets. As an application, we prove the ascending chain condition for minimal log discrepancies of exceptional singularities. We also introduce an invariant for klt singularities related to the total discrepancy of Kollár components.


Sign in / Sign up

Export Citation Format

Share Document