Duality for Outer $$L^p_\mu (\ell ^r)$$ Spaces and Relation to Tent Spaces
AbstractWe study the outer $$L^p$$ L p spaces introduced by Do and Thiele on sets endowed with a measure and an outer measure. We prove that, in the case of finite sets, for $$1< p \leqslant \infty , 1 \leqslant r < \infty $$ 1 < p ⩽ ∞ , 1 ⩽ r < ∞ or $$p=r \in \{ 1, \infty \}$$ p = r ∈ { 1 , ∞ } , the outer $$L^p_\mu (\ell ^r)$$ L μ p ( ℓ r ) quasi-norms are equivalent to norms up to multiplicative constants uniformly in the cardinality of the set. This is obtained by showing the expected duality properties between the corresponding outer $$L^p_\mu (\ell ^r)$$ L μ p ( ℓ r ) spaces uniformly in the cardinality of the set. Moreover, for $$p=1, 1 < r \leqslant \infty $$ p = 1 , 1 < r ⩽ ∞ , we exhibit a counterexample to the uniformity in the cardinality of the finite set. We also show that in the upper half space setting the desired properties hold true in the full range $$1 \leqslant p,r \leqslant \infty $$ 1 ⩽ p , r ⩽ ∞ . These results are obtained via greedy decompositions of functions in the outer $$L^p_\mu (\ell ^r)$$ L μ p ( ℓ r ) spaces. As a consequence, we establish the equivalence between the classical tent spaces $$T^p_r$$ T r p and the outer $$L^p_\mu (\ell ^r)$$ L μ p ( ℓ r ) spaces in the upper half space. Finally, we give a full classification of weak and strong type estimates for a class of embedding maps to the upper half space with a fractional scale factor for functions on $$\mathbb {R}^d$$ R d .