Mold resistance of medium density fiberboard panels made from black spruce, hybrid poplar, larch and a mixture of S-P-F chips

2005 ◽  
Vol 64 (3) ◽  
pp. 167-171 ◽  
Author(s):  
J.L. Shi ◽  
D.Q. Yang ◽  
S.Y. Zhang ◽  
B. Riedl
Holzforschung ◽  
2005 ◽  
Vol 59 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Jun Li Shi ◽  
Shu Yin Zhang ◽  
Bernard Riedl

Abstract Strength properties and dimensional stability of medium-density fiberboard (MDF) panels made from black spruce (Picea mariana [Mill.] BSP.) 0–20, 21–40, and over 40 year old fiber were studied. An analysis of covariance (ANCOVA) was performed to examine the differences in modulus of rupture (MOR), modulus of elasticity (MOE), and thickness swell (TS) of the three types of panels, while panel density was treated as a covariate in order to adjust the mean values that were partly attributed to panel density. The results indicate that MOR, internal bond (IB), and water absorption of MDF panels made from 0–20 year old fiber, which contained 100% juvenile wood, were significantly superior to those of panels made from 21–40 and over 40 year old fiber; but linear expansion (LE) of MDF panels made from 0–20 year old fiber was significantly larger than that of panels from the other two age classes. The differences in MOR, IB, water absorption, and LE between panels made from 21–40 and over 40 year old fiber were not significant. The comparisons of panel MOE and TS were relatively dependent on panel density due to existence of interactions among the three age groups.


RSC Advances ◽  
2021 ◽  
Vol 11 (40) ◽  
pp. 25010-25017
Author(s):  
Li Lu ◽  
Yan Wang ◽  
Tianhua Li ◽  
Supeng Wang ◽  
Shoulu Yang ◽  
...  

Reactions between CaCO3 and CH2O2 during polycondensation of UF resin produce Ca2+. Ionic bond complexation binds Ca2+ with UF resin. The UF resin crystalline percentage decreases from 26.86% to 22.71%. IB strength of resin bonded fiberboard increases from 0.75 to 0.94 MPa.


2016 ◽  
Vol 75 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Lidia Gurau ◽  
Nadir Ayrilmis ◽  
Jan Thore Benthien ◽  
Martin Ohlmeyer ◽  
Manja Kitek Kuzman ◽  
...  

2021 ◽  
Vol 42 (2) ◽  
pp. 124-129
Author(s):  
D. Kazlauskas ◽  
G. Keturakis ◽  
V. Jankauskas ◽  
A. Andriušis

Author(s):  
S. Thirugnanam ◽  
R. Srinivasan ◽  
Kshitij Anand ◽  
Abhishek Bhardwaj ◽  
G. Puthilibai ◽  
...  

CERNE ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Hamid Reza Taghiyari ◽  
Roya Majidi ◽  
Asghar Jahangiri

ABSTRACT Effects of nanowollastonite (NW) adsorption on cellulose surface were studied on physical and mechanical properties of medium-density fiberboard (MDF) panels; properties were then compared with those of MDF panels without NW-content. The size range of NW was 30-110 nm. The interaction between NW and cellulose was investigated using density functional theory (DFT). Physical and mechanical tests were carried out in accordance with the Iranian National Standard ISIRI 9044 PB Type P2 (compatible with ASTM D1037-99) specifications. Results of DFT simulations showed strong adsorption of NW on cellulose surface. Moreover, mechanical properties demonstrated significant improvement. The improvement was attributed to the strong adsorption of NW on cellulose surface predicted by DFT, adding to the strength and integrity between wood fibers in NW-MDF panels. It was concluded that NW would improve mechanical properties in MDF panels as a wood-composite material, as well as being effective in improving its biological and thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document