Aggressive reproductive competition among hopelessly queenless honeybee workers triggered by pheromone signaling

2008 ◽  
Vol 95 (6) ◽  
pp. 553-559 ◽  
Author(s):  
O. Malka ◽  
S. Shnieor ◽  
T. Katzav-Gozansky ◽  
A. Hefetz
Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 879-892 ◽  
Author(s):  
Anatoly V Grishin ◽  
Michael Rothenberg ◽  
Maureen A Downs ◽  
Kendall J Blumer

Abstract In the yeast Saccharomyces cerevisiae, mating pheromone response is initiated by activation of a G protein- and mitogen-activated protein (MAP) kinase-dependent signaling pathway and attenuated by several mechanisms that promote adaptation or desensitization. To identify genes whose products negatively regulate pheromone signaling, we screened for mutations that suppress the hyperadaptive phenotype of wild-type cells overexpressing signaling-defective G protein β subunits. This identified recessive mutations in MOT3, which encodes a nuclear protein with two Cys2-His2 Zn fingers. MOT3 was found to be a dosage-dependent inhibitor of pheromone response and pheromone-induced gene expression and to require an intact signaling pathway to exert its effects. Several results suggested that Mot3 attenuates expression of pheromone-responsive genes by mechanisms distinct from those used by the negative transcriptional regulators Cdc36, Cdc39, and Mot2. First, a Mot3-lexA fusion functions as a transcriptional activator. Second, Mot3 is a dose-dependent activator of several genes unrelated to pheromone response, including CYC1, SUC2, and LEU2. Third, insertion of consensus Mot3 binding sites (C/A/T)AGG(T/C)A activates a promoter in a MOT3-dependent manner. These findings, and the fact that consensus binding sites are found in the 5′ flanking regions of many yeast genes, suggest that Mot3 is a globally acting transcriptional regulator. We hypothesize that Mot3 regulates expression of factors that attenuate signaling by the pheromone response pathway.


2014 ◽  
Vol 24 (18) ◽  
pp. R843-R845 ◽  
Author(s):  
Weiming Li ◽  
Tyler Buchinger
Keyword(s):  

1993 ◽  
Vol 13 (1) ◽  
pp. 80-88 ◽  
Author(s):  
K Tanaka ◽  
J Davey ◽  
Y Imai ◽  
M Yamamoto

A defect in the map3 gene of the fission yeast Schizosaccharomyces pombe causes h+ mating-type-specific sterility. This gene was cloned by complementation. Nucleotide sequence analysis showed that it has a coding capacity of 365 amino acids. The deduced map3 gene product is a putative seven-transmembrane protein and has 20.0% amino acid identity with the a-factor receptor of Saccharomyces cerevisiae, encoded by STE3. It is also homologous with the Ustilago maydis mating pheromone receptors. The map3 gene is expressed in h+ cells but not in h- cells, and the transcripts are induced in response to nitrogen starvation. h+ cells defective in map3 do not respond to purified M-factor. When map3 is expressed ectopically in h- cells, they apparently acquire the ability to respond to the M-factor produced by themselves. The gpa1 gene, which encodes the alpha-subunit of a G-protein presumed to couple with the mating pheromone receptors, is essential for this function of map3. These observations strongly suggest that map3 encodes the M-factor receptor. Furthermore, this study provides strong support for the notion that pheromone signaling is essential for initiation of meiosis in S. pombe and that either M-factor signaling or P-factor signaling alone is sufficient.


Genetics ◽  
2020 ◽  
Vol 217 (2) ◽  
Author(s):  
Sheng-An Chen ◽  
Hung-Che Lin ◽  
Frank C Schroeder ◽  
Yen-Ping Hsueh

Abstract Detection of surrounding organisms in the environment plays a major role in the evolution of interspecies interactions, such as predator–prey relationships. Nematode-trapping fungi (NTF) are predators that develop specialized trap structures to capture, kill, and consume nematodes when food sources are limited. Despite the identification of various factors that induce trap morphogenesis, the mechanisms underlying the differentiation process have remained largely unclear. Here, we demonstrate that the highly conserved pheromone-response MAPK pathway is essential for sensing ascarosides, a conserved molecular signature of nemaotdes, and is required for the predatory lifestyle switch in the NTF Arthrobotrys oligospora. Gene deletion of STE7 (MAPKK) and FUS3 (MAPK) abolished nematode-induced trap morphogenesis and conidiation and impaired the growth of hyphae. The conserved transcription factor Ste12 acting downstream of the pheromone-response pathway also plays a vital role in the predation of A. oligospora. Transcriptional profiling of a ste12 mutant identified a small subset of genes with diverse functions that are Ste12 dependent and could trigger trap differentiation. Our work has revealed that A. oligospora perceives and interprets the ascarosides produced by nematodes via the conserved pheromone signaling pathway in fungi, providing molecular insights into the mechanisms of communication between a fungal predator and its nematode prey.


2006 ◽  
Vol 5 (2) ◽  
pp. 330-346 ◽  
Author(s):  
Scott A. Chasse ◽  
Paul Flanary ◽  
Stephen C. Parnell ◽  
Nan Hao ◽  
Jiyoung Y. Cha ◽  
...  

ABSTRACT A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein α subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Gα proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.


1994 ◽  
Vol 16 (1) ◽  
Author(s):  
Laura Betzig

AbstractWhy do men and women compete? And what makes them compete more or less? An answer to the first question follows directly from Darwin. If Homo sapiens, like other species, is a product of natural selection, then we should have evolved to compete in order to reproduce. An answer to the second question follows from more recent versions of Darwinism. People, like other organisms, are likely to compete socially - to form dominance hierarchies - to the extent that it is costly for subordinates to flee ecologically. This paper first reviews evidence that winners at political competition have consistently won at reproductive competition. Next, it documents the slow shift toward declining political competition - toward democracy, and toward declining reproductive competition - toward monogamy, in the course of Western history. Last, it offers a model of what might account for that change.


Sign in / Sign up

Export Citation Format

Share Document