Assignment of molecular linkage groups to soybean chromosomes by primary trisomics

2003 ◽  
Vol 107 (4) ◽  
pp. 745-750 ◽  
Author(s):  
J. J. Zou ◽  
R. J. Singh ◽  
J. Lee ◽  
S. J. Xu ◽  
P. B. Cregan ◽  
...  
Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 517-529
Author(s):  
Kuldeep Singh ◽  
D S Multani ◽  
Gurdev S Khush

Abstract Secondary trisomics and telotrisomics representing the 12 chromosomes of rice were isolated from the progenies of primary trisomics. A large population of each primary trisomic was grown. Plants showing variation in gross morphology compared to the primary trisomics and disomic sibs were selected and analyzed cytologically at diakinesis and pachytene. Secondary trisomics for both arms of chromosomes 1, 2, 6, 7 and 11 and for one arm of chromosomes 4, 5, 8, 9 and 12 were identified. Telotrisomics for short arm of chromosomes 1, 8, 9 and 10 and for long arms of chromosomes 2, 3 and 5 were isolated. These secondary and telotrisomics were characterized morphologically and for breeding behavior. Secondary trisomics 2n + 1S · 1S, 2n + 1L · 1L, 2n + 2S · 2S, 2n + 2L · 2L, 2n + 6S · 6S, 2n + 6L · 6L and 2n + 7L · 7L are highly sterile, and 2n + 1L · 1L, 2n + 2L · 2L and 2n + 7L · 7L do not set any seed even upon backcrossing. Telotrisomics are fertile and vigorous. Genetic segregation of 43 marker genes was studied in the F2 or backcross progenies. On the basis of segregation data, these genes were delimited to specific chromosome arms. Correct orientation of 10 linkage groups was determined and centromere positions on nine linkage groups were approximated. A revised linkage map of rice is presented.


Crop Science ◽  
2001 ◽  
Vol 41 (4) ◽  
pp. 1262-1267 ◽  
Author(s):  
P. B. Cregan ◽  
K. P. Kollipara ◽  
S. J. Xu ◽  
R. J. Singh ◽  
S. E. Fogarty ◽  
...  

1970 ◽  
Vol 12 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Lotti M. S. Sears ◽  
Suzanne Lee-Chen

The five primary trisomics and one telotrisomic of Arabidopsis have been established and identified with respect to known linkage groups. From diplotene preparations the chromosome complement was seen to comprise one long, three medium, and one short chromosome. All the trisomics except Fragilis were transmitted through the male (in frequencies up to 22%). There appears to be some selection against disomic eggs, only 21-30% recovery being observed from selfed trisomics. No tetrasomics were found.


Genetics ◽  
1984 ◽  
Vol 107 (1) ◽  
pp. 141-163
Author(s):  
G S Khush ◽  
R J Singh ◽  
S C Sur ◽  
A L Librojo

ABSTRACT Twelve primary trisomics of Oryza sativa L. were isolated from the progenies of spontaneous triploids and were transferred by backcrossing to the genetic background of IR36, a widely grown high yielding rice variety. Eleven trisomics can be identified morphologically from one another and from diploids. However, triplo 11 is difficult to distinguish from diploid sibs.—The extra chromosome of each trisomic was identified cytologically at pachytene stage of meiosis, and the chromosomes were numbered according to their length at this stage. The major distinguishing features of each pachytene chromosome were redescribed.—The female transmission rates varied from 15.5% for triplo 1, the longest chromosome, to 43.9% for triplo 12, the shortest chromosome. Seven of the 12 primary trisomics transmitted the extra chromosome through the male. The low level of chromosomal imbalance tolerated by rice and other evidence are interpreted to indicate that this species is a basic diploid.—Genetic segregation for 22 marker genes in the trisomic progenies was studied. Of a possible 264 combinations, involving 22 genes and 12 trisomics, 120 were examined. Marker genes for each of the 12 chromosomes were identified. The results helped establish associations between linkage groups and cytologically identifiable chromosomes of rice for the first time. Relationships between various systems of numbering chromosomes, trisomics, linkage groups and marker genes are described, and a revised linkage map of rice is presented.


Genome ◽  
1994 ◽  
Vol 37 (1) ◽  
pp. 133-136 ◽  
Author(s):  
F. Ahmad ◽  
T. Hymowitz

Primary trisomics are ideal cytogenetic tools for associating genes and linkage groups to known chromosomes and testing their independence. In the cultivated soybean, only 8 of the possible 20 primary simple trisomics are known. In this report cytological evidence for the identification of five more new primary simple trisomics, corresponding to chromosomes 6, 8, 12, 16, and 19, is presented for the first time. The precise identification was based on trivalent configuration of chromosomes at the pachynema stage of meiosis, where the chromosomes were identified by their characteristic total length, arm ratio, and distribution of heterochromatin and euchromatin. Cytological observation of chromosome pairing in the 2n = 42 chromosome F1 plants, obtained from eight crosses between known primary trisomics, also supported the identification of primary trisomics in soybean based on pachytene chromosome analysis. Together with the eight primary trisomics identified previously, 13 of the possible 20 primary simple trisomics have been successfully identified, which accounts for about 76% of the total nuclear euchromatin in soybean.Key words: Glycine max, soybean, trisomic, pachytene chromosome, chromosome pairing.


Author(s):  
M. Faville ◽  
B. Barrett ◽  
A. Griffiths ◽  
M. Schreiber ◽  
C. Mercer ◽  
...  

Accelerated improvement of two cornerstones of New Zealand's pastoral industries, per ennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.), may be realised through the application of markerassisted selection (MAS) strategies to enhance traditional plant breeding programmes. Genome maps constructed using molecular markers represent the enabling technology for such strategies and we have assembled maps for each species using EST-SSR markers - simple sequence repeat (SSR) markers developed from expressed sequence tags (ESTs) representing genes. A comprehensive map of the white clover genome has been completed, with 464 EST-SSR and genomic SSR marker loci spanning 1125 cM in total, distributed across 16 linkage groups. These have been further classified into eight pairs of linkage groups, representing contributions from the diploid progenitors of this tetraploid species. In perennial ryegrass a genome map based exclusively on EST-SSR loci was constructed, with 130 loci currently mapped to seven linkage groups and covering a distance of 391 cM. This map continues to be expanded with the addition of ESTSSR loci, and markers are being concurrently transferred to other populations segregating for economically significant traits. We have initiated gene discovery through quantitative trait locus (QTL) analysis in both species, and the efficacy of the white clover map for this purpose was demonstrated with the initial identification of multiple QTL controlling seed yield and seedling vigour. One QTL on linkage group D2 accounts for 25.9% of the genetic variation for seed yield, and a putative QTL accounting for 12.7% of the genetic variation for seedling vigour was detected on linkage group E1. The application of MAS to forage breeding based on recurrent selection is discussed. Keywords: genome map, marker-assisted selection, perennial ryegrass, QTL, quantitative trait locus, SSR, simple sequence repeat, white clover


Crop Science ◽  
1987 ◽  
Vol 27 (3) ◽  
pp. 435-439 ◽  
Author(s):  
I. Romagosa ◽  
L. Cistue ◽  
T. Tsuchiya ◽  
J. M. Lasa ◽  
R. J. Hecker
Keyword(s):  

Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 445-452
Author(s):  
Wei Jin ◽  
Harry T Horner ◽  
Reid G Palmer ◽  
Randy C Shoemaker

Abstract Oligonucleotide primers designed for conserved sequences from coding regions of β-1,3-glucanase genes from different species were used to amplify related sequences from soybean [Glycine max (L.) Merr.]. Sequencing and cross-hybridization of amplification products indicated that at least 12 classes of β-1,3-glucanase genes exist in the soybean. Members of classes mapped to 34 loci on five different linkage groups using an F2 population of 56 individuals. β-1,3-Glucanase genes are clustered onto regions of five linkage groups. Data suggest that more closely related genes are clustered together on one linkage group or on duplicated regions of linkage groups. Northern blot analyses performed on total RNA from root, stem, leaf, pod, flower bud, and hypocotyl using DNA probes for the different classes of β-1,3-glucanase genes revealed that the mRNA levels of all classes were low in young leaves. SGlu2, SGlu4, SGlu7, and SGlu12 mRNA were highly accumulated in young roots and hypocotyls. SGlu7 mRNA also accumulated in pods and flower buds.


Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1661-1672 ◽  
Author(s):  
Andrea Pedrosa ◽  
Niels Sandal ◽  
Jens Stougaard ◽  
Dieter Schweizer ◽  
Andreas Bachmair

AbstractLotus japonicus is a model plant for the legume family. To facilitate map-based cloning approaches and genome analysis, we performed an extensive characterization of the chromosome complement of the species. A detailed karyotype of L. japonicus Gifu was built and plasmid and BAC clones, corresponding to genetically mapped markers (see the accompanying article by Sandal  et al. 2002, this issue), were used for FISH to correlate genetic and chromosomal maps. Hybridization of DNA clones from 32 different genomic regions enabled the assignment of linkage groups to chromosomes, the comparison between genetic and physical distances throughout the genome, and the partial characterization of different repetitive sequences, including telomeric and centromeric repeats. Additional analysis of L. filicaulis and its F1 hybrid with L. japonicus demonstrated the occurrence of inversions between these closely related species, suggesting that these chromosome rearrangements are early events in speciation of this group.


Sign in / Sign up

Export Citation Format

Share Document