scholarly journals Quantitative Trait Loci and Candidate Genes Associated with Photoperiod Sensitivity in Lettuce (Lactuca spp.)

Author(s):  
Rongkui Han ◽  
Dean Lavelle ◽  
Maria José Truco ◽  
Richard Michelmore

Abstract Key message A population of lettuce that segregated for photoperiod sensitivity was planted under long-day and short-day conditions. Genetic mapping revealed two distinct sets of QTLs controlling daylength-independent and photoperiod-sensitive flowering time. Abstract The molecular mechanism of flowering time regulation in lettuce is of interest to both geneticists and breeders because of the extensive impact of this trait on agricultural production. Lettuce is a facultative long-day plant which changes in flowering time in response to photoperiod. Variations exist in both flowering time and the degree of photoperiod sensitivity among accessions of wild (Lactuca serriola) and cultivated (L. sativa) lettuce. An F6 population of 236 recombinant inbred lines (RILs) was previously developed from a cross between a late-flowering, photoperiod-sensitive L. serriola accession and an early-flowering, photoperiod-insensitive L. sativa accession. This population was planted under long-day (LD) and short-day (SD) conditions in a total of four field and screenhouse trials; the developmental phenotype was scored weekly in each trial. Using genotyping-by-sequencing (GBS) data of the RILs, quantitative trait loci (QTL) mapping revealed five flowering time QTLs that together explained more than 20% of the variation in flowering time under LD conditions. Using two independent statistical models to extract the photoperiod sensitivity phenotype from the LD and SD flowering time data, we identified an additional five QTLs that together explained more than 30% of the variation in photoperiod sensitivity in the population. Orthology and sequence analysis of genes within the nine QTLs revealed potential functional equivalents in the lettuce genome to the key regulators of flowering time and photoperiodism, FD and CONSTANS, respectively, in Arabidopsis.

2021 ◽  
Author(s):  
Rongkui Han ◽  
Dean Lavelle ◽  
Maria José Truco ◽  
Richard Michelmore

Abstract The molecular mechanism of flowering time regulation in lettuce is of interest to both geneticists and breeders because of the extensive impact of this trait on agricultural production. Lettuce is a facultative long-day plant which changes in flowering time in response to photoperiod. Variations exist in both flowering time and the degree of photoperiod sensitivity among accessions of wild (Lactuca serriola) and cultivated (L. sativa) lettuce. An F6 population of 236 recombinant inbred lines (RILs) was previously developed from a cross between a late-flowering, photoperiod-sensitive L. serriola accession and an early-flowering, photoperiod-insensitive L. sativa accession. This population was planted under long-day (LD) and short-day (SD) conditions in a total of four field and screenhouse trials; the developmental phenotype was scored weekly in each trial. Using genotyping-by-sequencing (GBS) data of the RILs, quantitative trait loci (QTL) mapping revealed five flowering time QTLs that together explained more than 20% of the variation in flowering time under LD conditions. Using two independent statistical models to extract the photoperiod sensitivity phenotype from the LD and SD flowering time data, we identified an additional five QTLs that together explained more than 30% of the variation in photoperiod sensitivity in the population. Orthology and sequence analysis of genes within the nine QTLs revealed potential functional equivalents in the lettuce genome to the key regulators of flowering time and photoperiodism, FD and CONSTANS respectively, in Arabidopsis.


2017 ◽  
Vol 155 (8) ◽  
pp. 1263-1271 ◽  
Author(s):  
W. L. TENG ◽  
W. J. FENG ◽  
J. Y. ZHANG ◽  
N. XIA ◽  
J. GUO ◽  
...  

SUMMARYLutein benefits human health significantly, including that of the eyes, skin and heart. Therefore, increasing lutein content in soybean seeds is an important objective for breeding programmes. However, no information about soybean lutein-related quantitative trait loci (QTL) has been reported, as of 2016. The aim of the present study was to identify QTLs underlying the lutein content in soybean seeds. A population including 129 recombinant inbred lines was developed from the cross between ‘Dongnong46’ (lutein 13·10 µg/g) and ‘L-100’ (lutein 23·96 µg/g), which significantly differed in seed lutein contents. This population was grown in ten environments including Harbin in 2012, 2013, 2014 and 2015; Hulan in 2013, 2014 and 2015; and Acheng in 2013, 2014 and 2015. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. In the present study, eight QTLs associated with lutein content were found initially, which could explain 1·01–19·66% of the observed phenotypic variation in ten different tested environments. The phenotypic contribution of qLU-1 (located near BARC-Satt588 on chromosome 9 (Chr 9; linkage group (LG) K)) was >10% across seven tested environments, while qLU-2 (located near Satt192 of Chr 12 (LG H)) and qLU-3 (located near Satt353 of Chr12 (LGH)) could explain 5–10% of the observed phenotypic variation in more than seven environments, respectively. qLU-5, qLU-6, qLU-7 and qLU-8 could be detected in more than four environments. These eight QTLs were novel, and have considerable potential value for marker-assistant selection of higher lutein content in soybean lines.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1117
Author(s):  
Pragya Adhikari ◽  
James McNellie ◽  
Dilip R. Panthee

Tomato (Solanum lycopersicum L.) is the second most-consumed vegetable in the world. The market value and culinary purpose of tomato are often determined by fruit size and shape, which makes the genetic improvement of these traits a priority for tomato breeders. The main objective of the study was to detect quantitative trait loci (QTL) associated with the tomato fruit shape and size. The use of elite breeding materials in the genetic mapping studies will facilitate the detection of genetic loci of direct relevance to breeders. We performed QTL analysis in an intra-specific population of tomato developed from a cross between two elite breeding lines NC 30P × NC-22L-1(2008) consisting of 110 recombinant inbred lines (RIL). The precision software Tomato Analyzer (TA) was used to measure fruit morphology attributes associated with fruit shape and size traits. The RIL population was genotyped with the SolCAP 7720 SNP array. We identified novel QTL controlling elongated fruit shape on chromosome 10, explaining up to 24% of the phenotypic variance. This information will be useful in improving tomato fruit morphology traits.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 829
Author(s):  
Tally I.C. Wright ◽  
Angela C. Burnett ◽  
Howard Griffiths ◽  
Maxime Kadner ◽  
James S. Powell ◽  
...  

Tetraploid landraces of wheat harbour genetic diversity that could be introgressed into modern bread wheat with the aid of marker-assisted selection to address the genetic diversity bottleneck in the breeding genepool. A novel bi-parental Triticum turgidum ssp. dicoccum Schrank mapping population was created from a cross between two landrace accessions differing for multiple physiological traits. The population was phenotyped for traits hypothesised to be proxies for characteristics associated with improved photosynthesis or drought tolerance, including flowering time, awn length, flag leaf length and width, and stomatal and trichome density. The mapping individuals and parents were genotyped with the 35K Wheat Breeders’ single nucleotide polymorphism (SNP) array. A genetic linkage map was constructed from 104 F4 individuals, consisting of 2066 SNPs with a total length of 3295 cM and an average spacing of 1.6 cM. Using the population, 10 quantitative trait loci (QTLs) for five traits were identified in two years of trials. Three consistent QTLs were identified over both trials for awn length, flowering time and flag leaf width, on chromosomes 4A, 7B and 5B, respectively. The awn length and flowering time QTLs correspond with the major loci Hd and Vrn-B3, respectively. The identified marker-trait associations could be developed for marker-assisted selection, to aid the introgression of diversity from a tetraploid source into modern wheat for potential physiological trait improvement.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sumandeep K. Bazzer ◽  
Larry C. Purcell

Abstract A consistent risk for soybean (Glycine max L.) production is the impact of drought on growth and yield. Canopy temperature (CT) is an indirect measure of transpiration rate and stomatal conductance and may be valuable in distinguishing differences among genotypes in response to drought. The objective of this study was to map quantitative trait loci (QTLs) associated with CT using thermal infrared imaging in a population of recombinant inbred lines developed from a cross between KS4895 and Jackson. Heritability of CT was 35% when estimated across environments. QTL analysis identified 11 loci for CT distributed on eight chromosomes that individually explained between 4.6 and 12.3% of the phenotypic variation. The locus on Gm11 was identified in two individual environments and across environments and explained the highest proportion of phenotypic variation (9.3% to 11.5%) in CT. Several of these CT loci coincided with the genomic regions from previous studies associated with canopy wilting, canopy temperature, water use efficiency, and other morpho-physiological traits related with drought tolerance. Candidate genes with biological function related to transpiration, root development, and signal transduction underlie these putative CT loci. These genomic regions may be important resources in soybean breeding programs to improve tolerance to drought.


Sign in / Sign up

Export Citation Format

Share Document