scholarly journals CD8 cytotoxic T-cell clone rapidly transfers autoimmune diabetes in very young NOD and MHC class I-compatible scid mice

Diabetologia ◽  
1997 ◽  
Vol 40 (9) ◽  
pp. 1044-1052 ◽  
Author(s):  
R. Yoneda ◽  
K. Yokono ◽  
M. Nagata ◽  
Y. Tominaga ◽  
H. Moriyama ◽  
...  
Diabetes ◽  
1996 ◽  
Vol 45 (7) ◽  
pp. 902-908 ◽  
Author(s):  
D. V. Serreze ◽  
W. S. Gallichan ◽  
D. P. Snider ◽  
K. Croitoru ◽  
K. L. Rosenthal ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1344-1344
Author(s):  
Nobuharu Fujii ◽  
Kellie V Rosinski ◽  
Paulo V Campregher ◽  
Edus H Warren

Abstract Abstract 1344 Poster Board I-366 Male recipients of female hematopoietic cell grafts, when compared with all other donor/recipient gender combinations, have an increased risk for both acute and chronic GVHD, but also have a significantly decreased risk of posttransplant relapse. F→M HCT is also characterized at the cellular level by donor (female) T cell responses against male-specific minor histocompatibility (H-Y) antigens, which can contribute to both graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) activity. SMCY is a Y-chromosome gene that has previously been shown to encode at least two distinct MHC class I-restricted H-Y antigens presented by HLA-A*0201 and HLA-B*0702, respectively. Also, association between CD8+ T cell responses specific for the SMCY311-319 FIDSYICQV epitope and GVHD or GVL has been reported. A CD8+ FIDSYICQV-specific T cell clone was also reported to induce histological signs of GVHD reaction in an in vitro skin-explant assay. To date, however, only two MHC class I-restricted, and no MHC class II-restricted, H-Y antigens encoded by SMCY have been characterized. Given the large size of the SMCY and the homologous SMCX proteins and the fact that they are only 85% identical at the amino acid sequence level, we hypothesized that SMCY encodes other MHC class I- and class II-restricted H-Y antigens, and that T cell responses against these epitopes may likewise contribute to GVHD and GVL activity after F→M HCT. Arrays of pentadecapeptides with eleven-residue overlap were designed to tile regions of the SMCY protein that are non-identical to the corresponding regions of its X chromosome-encoded homologue SMCX, and then used to generate SMCY-specific T cell lines recognizing novel SMCY-encoded MHC class I- and class II-restricted H-Y antigens. Peripheral blood mononuclear cells (PBMC) were obtained on posttransplant day +126 from a 46 year-old male patient with monosomy 7 AML who had received a hematopoietic cell graft from his MHC-identical sister, and were stimulated in vitro with dendritic cells derived from his pretransplant PBMC that had been pulsed with the SMCY pentadecapeptides. After three stimulations, a SMCY peptide-specific CD4+ T cell line as well as a SMCY311-319 (FIDSYICQV)-specific CD8+ T cell line were obtained. After cloning by limiting dilution, we further characterized the SMCY-specific CD4+ T cell clone, 13H3. The 13H3 T cell clone recognizes the SMCY232-246 15-mer peptide, ELKKLQIYGPGPKMM, presented by HLA-DRB1*1501, and has a CD3+, CD4+, CD8−, CD45RA−, CD45RO+ surface phenotype. The cytokine release profile of this clone when assessed with SMCY232-246-loaded donor-derived EBV-LCL, as measured by the Luminex assay, is characterized mainly by Th1 cytokines (IFN-g and IL-2), but the clone also produced low to moderate levels of the Th2 cytokines IL-4, IL-10, and TGF-β. A minigene encoding SMCY232-246 was recognized by the 13H3 clone in a HLA-DRB1*1501-dependent fashion when transfected into COS-7 cells, but a minigene encoding the homologous SMCX-derived ELKKLQIYGAGPKMM peptide was not recognized, demonstrating that the clone is SMCY-specific. The 13H3 clone recognized 3 of 5 HLA-DRB1*1501+ male primary leukemia cells, but did not recognize either of 2 HLA-DRB1*1501− male or either of 2 HLA-DRB1*1501+ female primary leukemia cells. These results suggest that CD4+ T cell responses against the SMCY232-246 epitope could potentially contribute to GVL activity after F→M HCT. A SMCY232-246/HLA-DRB1*1501 tetramer has been constructed which specifically marks the 13H3 T cell clone, and future studies will use this reagent to determine whether CD4+ T cells specific for this epitope can be detected directly ex vivo in posttransplant blood samples from HLA-DRB1*1501+ F→M HCT recipients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4905-4905
Author(s):  
Simon Voelkl ◽  
Tamson Moore ◽  
Michael Rehli ◽  
Michael Nishimura ◽  
Karin Fischer ◽  
...  

Abstract The immune attack against malignant tumors requires the concerted action of CD8+ cytotoxic T lymphocytes (CTL) as well as CD4+ T helper cells. The contribution of T cell receptor (TCR)αβ+ CD4− CD8− double-negative (DN) T cells to anti-tumor immune responses is widely unknown. In previous studies, we have demonstrated that DN T cells with a broad TCR repertoire are present in humans in the peripheral blood and the lymph nodes of healthy individuals. Here we characterize a human DN T cell clone (T4H2) recognizing an HLA-A2-restricted melanoma-associated antigenic gp100-peptide isolated from the peripheral blood of a melanoma patient. Antigen recognition by the T4H2 DN clone resulted in specific secretion of IFN-γ and TNF. Although lacking the CD8 molecule the gp100-specifc DN T cell clone was able to confer antigen-specific cytotoxicity against gp100-loaded target cells as well as HLA-A2+ gp100 expressing melanoma cells. The cytotoxic capacity was found to be perforin/granzymeB-dependent. Together, these data indicate that functionally active antigen-specific DN T cells recognizing MHC class I-restricted tumor-associated antigen (TAA) may contribute to anti-tumor immunity in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2541-2541
Author(s):  
Zwi N. Berneman ◽  
Ann Van Driessche ◽  
Peter Ponsaerts ◽  
Liquan Gao ◽  
Hans J. Stauss ◽  
...  

Abstract The Wilms’ tumor antigen (WT1) is overexpressed in almost all leukemias and in several solid tumors. Overexpression of WT1 blocks the normal differentiation and enhances proliferation of hematopoietic progenitor cells. WT1 is also used in the detection of minimal residual disease. Using WT1-specific MHC class I tetramers, we were able to detect ex vivo low numbers of WT1-specific CD8+ T cells in the peripheral blood or bone marrow of leukemia patients, but not of healthy donors. In one particular donor we could detect up to 24% WT1 tetramer positive cells at the time of diagnosis. WT1 tetramer positive cells were present in all types of leukemia, except for CLL, and also in patients with MDS. Because WT1 plays an important role in leukemogenesis, it could serve as an antigenic target for dendritic cell-based immunotherapy. We used the mRNA electroporation strategy that allows presentation of multiple WT1 epitopes by MHC class I molecules, irrespective of the HLA haplotype. Monocyte-derived DC (Mo-DC) were electroporated with in vitro transcribed WT1 mRNA. RT-PCR and Western blot analysis showed that WT1 RNA and protein, respectively, was present for up to 5 days in WT1-electroporated DC, but not in mock- or EGFP mRNA-electroporated Mo-DC. Importantly, using a CD8+ T cell clone that secretes IFN-gamma upon recognizing the HLA-A2 immunodominant WT1126–134 epitope, we showed that WT1 mRNA-electroporated Mo-DC processed the WT1 protein via the MHC class I pathway and presented the WT1 epitope to the T cells in an HLA- and antigen-specific manner. Since Mo-DCs are a non-expandable source of antigen-presenting cells, we also used proliferating CD40-activated B (CD40-B) cells as inducers for WT1-specific T cell immunity. CD40-B cells were expanded to high numbers from a limited amount of peripheral blood and subsequently electroporated with WT1 mRNA. In T cell clone activation experiments, WT1 mRNA-electroporated CD40-B cells were as efficient as Mo-DC in presenting the WT1 epitope in a MHC class I-restricted manner. Based on these results, we are currently focusing on the in vitro (re)activation of autologous WT1-specific cytotoxic T cells of leukemia patients using WT1-loaded autologous Mo-DC or CD40-B cells and on the immunological parameters to break immune tolerance against the WT1 tumor self antigen.


2004 ◽  
Vol 34 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Esther Caparrós ◽  
A. Beltrán de Heredia ◽  
Emilio Carpio ◽  
David Sancho ◽  
Enrique Aguado ◽  
...  

Diabetes ◽  
1996 ◽  
Vol 45 (7) ◽  
pp. 902-908 ◽  
Author(s):  
D. V. Serreze ◽  
E. H. Leiter ◽  
G. J. Christianson ◽  
M. E. Dudley ◽  
D. C. Roopenian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document