Long-Term Effects of Crude Oil Spillage on Selected Physicochemical Properties Including Heavy Metal Contents of Sandy Tropical Soil

2019 ◽  
Vol 102 (4) ◽  
pp. 468-476 ◽  
Author(s):  
Abasiama S. Umoren ◽  
Chioma M. Igwenagu ◽  
Peter I. Ezeaku ◽  
Gloria I. Ezenne ◽  
Sunday E. Obalum ◽  
...  
Author(s):  
A Taraqqi-A-Kamal ◽  
Christopher J. Atkinson ◽  
Aimal Khan ◽  
Kaikai Zhang ◽  
Peng Sun ◽  
...  

The focus of this study is on the soil physicochemical, biological, and microbiological processes altered by biochar application to heavy metal (HM) contaminated soils. The aim is to highlight agronomical and environmental issues by which the restorative capacity of biochar might be developed. Literature shows biochar can induce soil remediation, however, it is unclear how soil processes are linked mechanistically to biochar production and if these processes can be manipulated to enhance soil remediation. The literature often fails to contribute to an improved understanding of the mechanisms by which biochar alters soil function. It is clear that factors such as biochar feedstock, pyrolysis conditions, application rate, and soil type are determinants in biochar soil functionality. These factors are developed to enhance our insight into production routes and the benefits of biochar in HM soil remediation. Despite a large number of studies of biochar in soils, there is little understanding of long-term effects, this is particularly true with respect to the use and need for reapplication in soil remediation.  


2020 ◽  
Vol 194 ◽  
pp. 110433 ◽  
Author(s):  
Qing Xie ◽  
Lishan Qian ◽  
Shanyi Liu ◽  
Yongmin Wang ◽  
Yongjiang Zhang ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yintao Lu ◽  
Hong Yao ◽  
Dan Shan ◽  
Yichen Jiang ◽  
Shichao Zhang ◽  
...  

Soil and plant samples were collected from Tongliao, China, during the maize growth cycle between May and October 2010. Heavy metals, such as Cr, Pb, Ni, and Zn, were analyzed. The concentrations of Cr, Pb, Ni, and Zn in the wastewater-irrigated area were higher than those in the topsoil from the groundwater-irrigated area. The concentrations of metals in the maize increased as follows: Pb < Ni < Zn < Cr. In addition, Cr, Pb, and Ni mainly accumulated in the maize roots, and Zn mainly accumulated in the maize fruit. The results of translocation factors (TF) and bioconcentration factors (BCF) of maize for heavy metals revealed that maize is an excluder plant and a potential accumulator plant and can serve as an ideal slope remediation plant. In addition, the increasing heavy metal contents in soils that have been polluted by wastewater irrigation must result in the accumulation of Cr, Pb, Ni, and Zn in maize. Thus, the pollution level can be decreased by harvesting and disposing of and recovering the plant material.


Sign in / Sign up

Export Citation Format

Share Document