A closed-form orthotropic constitutive model for fused filament fabrication materials
We model two common fused filament fabrication mesostructures, square and hexagonal, using an orthotropic constitutive model and derive closed-form expressions for all nine effective elastic constants. The periodic void shapes are modeled using three and four point hypotrochoid curves with a single shape parameter that controls the sharpness of the points. Using the complex variable method of elasticity, we derive the in-plane elastic constants (Exx, Eyy, Gxy, nuxy) as well as out-of-plane antiplane shear constants (Gzx and Gzy). The remaining out-of-plane elastic constants (Ezz, nuzx, nuzy) are derived by directly solving the linearelasticity equations. We compare our results by conducting unit cell simulations on both mesostructures and at various porosity values. The simulations match the closed-form expressions exactly for Ezz, nuzx, and nuzy. For the remaining elastic constants, the simulation results match the closed-form expressions better for the square mesostructure than the hexagonal mesostructure. Differences between simulation and closed-form expressions are less than 10% for porosity values less than 6% (hexagonal mesostructure) and 10% (square mesostructure) for any of the nine elastic constants.