Modeling the material removal rate in ultrasonic machining of titanium using dimensional analysis

2009 ◽  
Vol 48 (1-4) ◽  
pp. 103-119 ◽  
Author(s):  
Jatinder Kumar ◽  
J. S. Khamba
1995 ◽  
Vol 117 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Z. J. Pei ◽  
D. Prabhakar ◽  
P. M. Ferreira ◽  
M. Haselkorn

An approach to modeling the material removal rate (MRR) during rotary ultrasonic machining (RUM) of ceramics is proposed and applied to predicting the MRR for the case of magnesia stabilized zirconia. The model, a first attempt at predicting the MRR in RUM, is based on the assumption that brittle fracture is the primary mechanism of material removal. To justify this assumption, a model parameter (which models the ratio of the fractured volume to the indented volume of a single diamond particle) is shown to be invariant for most machining conditions. The model is mechanistic in the sense that this parameter can be observed experimentally from a few experiments for a particular material and then used in prediction of MRR over a wide range of process parameters. This is demonstrated for magnesia stabilized zirconia, where very good predictions are obtained using an estimate of this single parameter. On the basis of this model, relations between the material removal rate and the controllable machining parameters are deduced. These relationships agree well with the trends observed by experimental observations made by other investigators.


Author(s):  
Judong Shen ◽  
Z. J. Pei ◽  
E. S. Lee

Rotary ultrasonic machining (RUM) is one of the cost-effective machining methods for machining difficult to process material. It is a hybrid machining process that combines the material removal mechanisms of diamond grinding with ultrasonic machining. However, due to the lack of understanding of the mechanisms of these operations, models for these machining processes are difficult to establish. In this paper, the support vector fuzzy adaptive network (SVFAN), a parameter free nonlinear regression technique, is used to model the material removal rate in RUM. The SVFAN retains the advantages of both the fuzzy adaptive networks and the support vector machines. The former possesses the linguistic representation ability and the latter is a very effective learning machine. The results are compared with that obtained by the use of fuzzy adaptive network and it is shown that the combined approach is a more effective algorithm for the modeling of complex manufacturing processes.


Author(s):  
Ravi Pratap Singh ◽  
Sandeep Singhal

Macor ceramic has been well recognized as an eminent engineering material which possesses enlarged industrial usage owing to its excellent and versatile properties. However, its fruitful and economic processing is still unanswered. This article has targeted to experimentally investigate the influence of numerous process variables on machining characteristics in rotary ultrasonic machining of Macor ceramic. The impact of different input factors, namely, spindle speed, feed rate, coolant pressure, and ultrasonic power has been appraised on process responses of interest, that is, material removal rate and chipping size. The experimental plan was designed by employing response surface methodology through central composite rotatable design. The variance analysis test has also been performed with a view to observe the significance of considered parameters. Microstructure of machined samples has also been evaluated and analyzed using scanning electron microscope. This analysis has revealed and confirmed the presence of dominated brittle fracture that caused removal of material along with the thin plastic deformation in rotary ultrasonic machining of Macor ceramic. The reliability and competence of the developed mathematical model have been established with test results. The multi-response optimization of machining responses has also been done by utilizing desirability approach, and at optimized parametric setting, the obtained experimental values for material removal rate and chipping size are 0.4762 mm3/s and 0.3718 mm, respectively, with the combined desirability index value of 0.937.


Author(s):  
Murali M. Sundaram ◽  
Sreenidhi Cherku ◽  
K. P. Rajurkar

Advanced engineering materials posses excellent properties such as high wear resistance, and inertness to corrosion and chemical reactions. Since these materials are usually hard, brittle, chemically inert, and electrically nonconductive, they pose serious machinability challenges. Micro ultrasonic machining (Micro USM) is an emerging method for the micromachining of hard and brittle materials without any thermal damage. This paper presents the results of micro ultrasonic machining using oil based abrasive slurry. Details of the in-house built experimental setup used to conduct the experiments are explained. The influence of process parameters such as slurry medium, slurry concentration, and abrasive particle size on the performance of micro USM are reported. It was noticed that the evidence of three body material removal mechanism is predominant for micro USM using oil based slurry. In general, the material removal rate increases with the increase in the abrasive particle size for both aqueous abrasive slurry and oil based abrasive slurry. Further, material removal rate is consistently higher for experiments conducted with aqueous abrasive slurry medium. On the other hand, it is noticed that the oil based slurry medium provides better surface finish. It is also noticed that the smaller abrasive grains provide better surface finish for both aqueous, and oil based abrasive slurry mediums. Role of slurry concentration is ambiguous, as no clear trend of its effect of on process performance is evident in the available experimental results.


2016 ◽  
Vol 852 ◽  
pp. 160-165 ◽  
Author(s):  
Munmun Bhaumik ◽  
Kalipada Maity ◽  
Kasinath Das Mohapatra

Electro discharge machining (EDM) is a most commonly used machining process among all the non-conventional machining process which removes materials via electrical and thermal energy. The primary goal of EDM is to get more material removal rate (MRR) with lower radial overcut (ROC). Normally, the responses are predicted using empirical models which are limited to only machining parameters and they do not consider the effects of work material properties on the process performance. Therefore in this study, a model has been developed including machining parameter as well as thermo-physical property of work material. In this investigation, a semi-empirical model has been established for the material removal rate (MRR) and radial overcut (ROC) by adopting the dimensional analysis technique. Dimensional analysis is a technique of dimensions and a mathematical technique that deals with the physical quantities concerned with the experiments to formulate a model for the response in terms of response control parameters as well as some physical properties of the materials. Buckingham’s л theorem is a main theorem in dimensional analysis and it is a signification of Rayleigh’s method of dimensional analysis. The theory is applied to gather each and every variable presenting the problem in a number of the dimensionless products. For this study, the thermo-physical properties viz. density, thermal conductivity and coefficient of thermal expansion and machining parameters like peak current, pulse on time, gap voltage and duty cycle are considered as input factor. AISI 304 stainless steel used as work material and Tungsten carbide is used as tool material for this investigation.


2017 ◽  
Vol 13 (4) ◽  
pp. 612-627 ◽  
Author(s):  
Kanwal Jeet Singh ◽  
Inderpreet Singh Ahuja ◽  
Jathinder Kapoor

Purpose The purpose of this paper, an original research paper, is to study the optimization of material removal rate (MRR) in ultrasonic machining of polycarbonate bulletproof glass and acrylic heat-resistant glass. The machining of these materials is a very tough job. There are so many constraints which need to be taken into account while machining, but without proper knowledge of material properties and machining parameters, machining is not possible. This paper gives basic knowledge about polycarbonate bulletproof and acrylic heat-resistant glass and provides ways as to how these types of materials are processed or machined. Design/methodology/approach The Taguchi method was utilized to optimize the ultrasonic machining parameters for drilling these advanced materials. The relationship between MRR and other controllable process parameters such as concentration of slurry, type of abrasive, abrasive grit size, power rating, concentration of HF acid and type of tool material has been analyzed by using the Taguchi approach. Findings Through the Taguchi analysis, it is concluded that types of abrasive and HF acid concentrations have a significant role to play in MRR for both materials; in which, type of abrasive have 72.91 and 72.96 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. Similarly, HF acid concentration has 14.70 and 14.65 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. The MRR was improved by 34.44 percent in polycarbonate bulletproof glass and 29.25 percent in acrylic heat-resistant glass. Originality/value After experimental investigation, the results of the Taguchi modal are validated.


Sign in / Sign up

Export Citation Format

Share Document