Prediction of surface roughness of end milling operation using genetic algorithm

2014 ◽  
Vol 77 (1-4) ◽  
pp. 369-381 ◽  
Author(s):  
G. Mahesh ◽  
S. Muthu ◽  
S. R. Devadasan
Author(s):  
Omar Monir Koura ◽  
Ahmed Samy El-Akkad

End milling is a key machining operation in industrial world, particularly in manufacturing of dies and similar products. Although, such products require high degree of surface roughness, milling operation is taken to be the enough for the cost wise if considering further finishing operations. Thus optimizing the cutting conditions to achieve the optimal surface roughness is becoming a vital issue. Several authors tackled this problem. In this paper the same case is investigated but with an advanced algorithm using regression and genetic methodology. The results obtained which ended by deducing a general equation combining the effect of various parameters on surface roughness highlighted the factors involved in achieving the surface roughness and proved to be good tool to predict the optimal cutting conditions.


2011 ◽  
Vol 264-265 ◽  
pp. 1154-1159
Author(s):  
Anayet Ullah Patwari ◽  
A.K.M. Nurul Amin ◽  
S. Alam

Titanium alloys are being widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. Surface roughness is one of the most important requirements in machining of Titanium alloys. This paper describes mathematically the effect of cutting parameters on Surface roughness in end milling of Ti6Al4V. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The developed RSM is coupled as a fitness function with genetic algorithm to predict the optimum cutting conditions leading to the least surface roughness value. MATLAB 7.0 toolbox for GA is used to develop GA program. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to achieve the minimum surface roughness value.


2012 ◽  
Vol 488-489 ◽  
pp. 836-840 ◽  
Author(s):  
S. Shajari ◽  
M.H. Sadeghi ◽  
H. Hassanpour ◽  
B. Jabbaripour

Inclined surfaces are commonly used in the aerospace and die/mold industries. For machining this kind of surfaces, many aspects have to be considered as machinability considerations including milling strategies, machining parameters and etc. In machining, achieving better quality is challenging task. Various tool-path strategies during milling operation leads to variable surface roughness on machined samples. The objective of this study is to analyze different machining strategies in 3-axis milling of a typical curved geometry part. The machining parameters used in this study, are cutting speed, feedrate and stepover. This paper also presents an approach to develop a mathematical model for measuring Scallop height size and distribution for different machining strategies to show that Scallop height size has direct relation with Surface roughness measurements in each strategy. Finally the optimized strategy based on the results was determined.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950054 ◽  
Author(s):  
HAMIDREZA NAMAZI ◽  
ALI AKHAVAN FARID ◽  
TECK SENG CHANG

Analysis of the surface quality of workpiece is one of the major works in machining operations. Variations of cutting force is an important factor that highly affects the quality of machined workpiece during operation. Therefore, investigating about the variations of cutting forces is very important in machining operation. In this paper, we employ fractal analysis in order to investigate the relation between complex structure of cutting force and surface roughness of machined surface in end milling operation. We run the machining operation in different conditions in which cutting depths, type of cutting tool (serrated versus square end mills) and machining conditions (wet and dry machining) change. Based on the obtained results, we observed the relation between complexity of cutting force and surface roughness of generated surface of machined workpiece due to engagement with the flute surface of end mill, in case of using square end mill in dry machining condition, and also in case of using serrated end mill in wet machining condition. The fractal approach that was employed in this research can be potentially examined in case of other machining operations in order to investigate the possible relation between complex structure of cutting force and surface quality of machined workpiece.


2013 ◽  
Author(s):  
A. B. Koteswara Rao ◽  
Sanjay Darvekar ◽  
K. Ramji

This paper presents the impact of workpiece location on the machining performance of a 2-degree of freedom Parallel Kinematic Machine (PKM) tool. The PKM behavior is highly non-uniform and depends on the tool position within the workspace. The structural deformation and vibration due to cutting loads affect the quality of machined surfaces. The aim of the present study is to find the optimal tool position (workpiece location) where the workpiece is machined to a specific quality level. End-milling operations are carried out at various locations within the workspace and the surface roughness of machined surface (Ra) is measured at each location. A regression model is developed to predict the surface roughness. The study shows that the workpiece location has significant impact upon surface roughness of the machined part. Finally, a suitable workspace is defined for end-milling operation.


Sign in / Sign up

Export Citation Format

Share Document