Experimental investigation of machinability parameters in high-speed micro-end milling of titanium (grade-2)

2015 ◽  
Vol 85 (9-12) ◽  
pp. 2139-2153 ◽  
Author(s):  
C. Bandapalli ◽  
K. K. Singh ◽  
B. M. Sutaria ◽  
D. V. Bhatt
2018 ◽  
Vol 22 (6) ◽  
pp. 989-1011 ◽  
Author(s):  
Chakradhar Bandapalli ◽  
Kundan Kumar Singh ◽  
Bharatkumar Mohanbhai Sutaria ◽  
Dhananjay Vishnuprasad Bhatt

2017 ◽  
Vol 4 (2) ◽  
pp. 1019-1028 ◽  
Author(s):  
Chakradhar Bandapalli ◽  
Bharatkumar Mohanbhai Sutaria ◽  
Dhananjay Vishnuprasad Bhatt ◽  
Kundan Kumar Singh

2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2020 ◽  
Vol 4 (2) ◽  
pp. 34 ◽  
Author(s):  
Timo Platt ◽  
Alexander Meijer ◽  
Dirk Biermann

The increasing demand for complex and wear-resistant forming tools made of difficult-to-machine materials requires efficient manufacturing processes. In terms of high-strength materials; highly suitable processes such as micromilling are limited in their potential due to the increased tool loads and the resulting tool wear. This promotes hybrid manufacturing processes that offer approaches to increase the performance. In this paper; conduction-based thermally assisted micromilling using a prototype device to homogeneously heat the entire workpiece is investigated. By varying the workpiece temperature by 20 °C < TW < 500 °C; a highly durable high-speed steel (HSS) AISI M3:2 (63 HRC) and a hot-work steel (HWS) AISI H11 (53 HRC) were machined using PVD-TiAlN coated micro-end milling tools (d = 1 mm). The influence of the workpiece temperature on central process conditions; such as tool wear and achievable surface quality; are determined. As expected; the temporary thermal softening of the materials leads to a reduction in the cutting forces and; thus; in the resulting tool wear for specific configurations of the thermal assistance. While only minor effects are detected regarding the surface topography; a significant reduction in the burr height is achieved.


2013 ◽  
Vol 372 ◽  
pp. 364-368 ◽  
Author(s):  
Abdul Rahman Mohamed ◽  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
M.S.H. Chowdhury

This paper presents the effect of high speed micro end milling parameters on tool vibration during machining of poly (methyl methacrylate) (PMMA). The main focus is to achieve minimum tool vibration by controlling the cutting parameters; spindle speed, feed rate and depth of cut. An empirical model for tool vibration has been developed using Taguchi method. The orthogonal array, signal-to-noise ratio and analysis of variance revealed that high spindle speed is the most influential parameter to increase the level of tool vibration.


Sign in / Sign up

Export Citation Format

Share Document