High-speed electrochemical discharge drilling (HSECDD) for micro-holes on C17200 beryllium copper alloy in deionized water

2016 ◽  
Vol 88 (1-4) ◽  
pp. 827-835 ◽  
Author(s):  
Shuliang Dong ◽  
Zhenlong Wang ◽  
Yukui Wang
2011 ◽  
Vol 295-297 ◽  
pp. 1794-1799 ◽  
Author(s):  
Shao Fu Huang ◽  
Di Zhu ◽  
Yong Bin Zeng ◽  
Wei Wang ◽  
Yong Liu

Electrochemical discharge machining (ECDM), based on electrochemical machining (ECM) and electrodischarge machining (EDM), is an unconventional micro-machining technology. In this paper, with the use of water, the process of micro hole on ANSI 304 stainless steel machined by micro-ECDM with high speed rotating cathode is studied. The effects of machining conditions such as the cathode rotating speed and cathode diameter on the surface quality and accuracy of the shape are investigated. The results indicate that a relatively higher electrode rotating speed can improve the machining accuracy of the micro-holes and reduce the electrodes wear.


Author(s):  
Yan Zhang ◽  
Islam Md. Rashedul ◽  
Lei Ji ◽  
Baoyang Jiang

Abstract Tube electrode high-speed electrochemical discharge machining (TSECDM) has been effectively used in the manufactures of micro holes with difficult-to-cut conductive materials in the field of aerospace industry. The design and parameters of circuit are critical for the machining performances of TSECDM. In this paper, the influences of circuit on the TSECDM performances are studied. Firstly, a relaxation type RLC generator is designed and analyzed by MATLAB simulation. Secondly, the effects of RLC circuit parameters such a resistor (R), capacitor (C) and inductor (L) on machining performances are investigated by experiments on the bulk of SS304 alloys by limiting factors changing. Finally, the analysis achievement indicated that the circuit selection parameters value R (15Ω); C (220nF); L (0.13mH) can be used to obtain a better machining performance.


Alloy Digest ◽  
1973 ◽  
Vol 22 (9) ◽  

Abstract BERYLCO 25 is the standard high-performance beryllium copper alloy most widely used because of its high strength, hardness and excellent spring characteristics. BERYLCO 25 is the updated version of BERYLCO 25S (Alloy Digest Cu-3, November 1952). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-271. Producer or source: Kawecki Berylco Industries Inc..


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1992 ◽  
Vol 41 (8) ◽  

Abstract BRUSH CASTING ALLOY 21C is a beryllium copper alloy of high strength with cobalt as the second alloying element (1.0 to 2.0% Co). Use is in age-hardened temper. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, heat treating, and machining. Filing Code: Cu-575. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1970 ◽  
Vol 19 (6) ◽  

Abstract BRUSH alloy M25 is a free-machining beryllium-copper alloy having good response to age-hardening for high strength, hardness, fatigue and corrosion resistance. It is recommended for screw machine products, gears, shafts, hardware, fasteners, connectors, electronic and electrical components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-217. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1984 ◽  
Vol 33 (1) ◽  

Abstract Copper Alloy No. C94300 is a cast copper-tin-lead alloy (bronze). It is characterized by low hardness and strength, medium ductility, excellent machinability and good resistance to corrosion. Commercial names formerly used (but not recommended) are (1) Ingot No. 322, (2) Soft Bronze, (3) High-Leaded Tin Bronze and (4) 70-5-25. This alloy is recommended highly for high-speed bearings at light loads. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-470. Producer or source: Copper alloy foundries.


Alloy Digest ◽  
1985 ◽  
Vol 34 (12) ◽  

Abstract Copper Alloy No. C81400 is a precipitation-hardenable alloy of moderate hardness and strength. Its common name is beryllium-modified chromium copper and a previous trade name was Beryllium Copper 70C. Because of its beryllium content, its manufacture may present a health hazard. Typical uses comprise electrical parts that meet RWMA (Resistance Wire Manufacturer's Association) Class II standards. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-504. Producer or source: Copper alloy foundries.


Sign in / Sign up

Export Citation Format

Share Document