Micro-Hole Machined by Electrochemical Discharge Machining (ECDM) with High Speed Rotating Cathode

2011 ◽  
Vol 295-297 ◽  
pp. 1794-1799 ◽  
Author(s):  
Shao Fu Huang ◽  
Di Zhu ◽  
Yong Bin Zeng ◽  
Wei Wang ◽  
Yong Liu

Electrochemical discharge machining (ECDM), based on electrochemical machining (ECM) and electrodischarge machining (EDM), is an unconventional micro-machining technology. In this paper, with the use of water, the process of micro hole on ANSI 304 stainless steel machined by micro-ECDM with high speed rotating cathode is studied. The effects of machining conditions such as the cathode rotating speed and cathode diameter on the surface quality and accuracy of the shape are investigated. The results indicate that a relatively higher electrode rotating speed can improve the machining accuracy of the micro-holes and reduce the electrodes wear.

Author(s):  
Raju Mahadeorao Tayade ◽  
Biswanath Doloi ◽  
Biplab Ranjan Sarkar ◽  
Bijoy Bhattacharyya

Sequential micro machining (SMM) is a strategy of machining applied for micro-part manufacturing. Due to the finding of new sequential machining combinations, the authors have presented a novel combination of micro-ECDM (µECDM) drilling and micro-ECM (µECM) finishing for producing micro-holes in SS-304 stainless steel. An experimental setup was developed indigenously to conduct both machining processes at one station. The sequential processes were employed with desirable machining parameters, during their individual execution. The most desirable parameter like machining voltage, for hole drilling by µECDM was decided by studying hole taper angle, radial overcut, etc. The µECDM generates a recast layer, to overcome the adverse effects of µECDM, with the µECM finishing applied subsequently. The experimental results of SMM indicate a reduction in hole taper angle, improved circularity, and better surface quality. The change of phase of material due to sequencing of µECDM and µECM processes was analyzed by an XRD analysis of SS-304.


Author(s):  
Yan Zhang ◽  
Islam Md. Rashedul ◽  
Lei Ji ◽  
Baoyang Jiang

Abstract Tube electrode high-speed electrochemical discharge machining (TSECDM) has been effectively used in the manufactures of micro holes with difficult-to-cut conductive materials in the field of aerospace industry. The design and parameters of circuit are critical for the machining performances of TSECDM. In this paper, the influences of circuit on the TSECDM performances are studied. Firstly, a relaxation type RLC generator is designed and analyzed by MATLAB simulation. Secondly, the effects of RLC circuit parameters such a resistor (R), capacitor (C) and inductor (L) on machining performances are investigated by experiments on the bulk of SS304 alloys by limiting factors changing. Finally, the analysis achievement indicated that the circuit selection parameters value R (15Ω); C (220nF); L (0.13mH) can be used to obtain a better machining performance.


2013 ◽  
Vol 567 ◽  
pp. 21-26 ◽  
Author(s):  
Zhi Yong Li ◽  
Zong Wei Niu ◽  
Li Li

Electrochemical micro-machining (EMM) has become one of the main machining methods for production of miniaturized parts and components. Utilizing the developed EMM set-up, the effects of ultrasonic wave frequency on characteristics of localized dissolution and accuracy of micro-hole in EMM are investigated and evaluated. The experiment results demonstrate that the accuracy of micro-hole and characteristics of localized dissolution can become better with the increase of ultrasonic wave frequency. The accuracy of micro-hole machined by 26KHZ can improve about 30% than that by 16KHZ. Moreover, the ability of localized dissolution by 26KHZ can be increased about 27%-30%.


2004 ◽  
Vol 471-472 ◽  
pp. 37-42 ◽  
Author(s):  
B.X. Jia ◽  
Zhen Long Wang ◽  
Fu Qiang Hu ◽  
Xiao Hai Li ◽  
Wan Sheng Zhao

To perform several micro-machining on same machine tool, a micro machining equipment was researched and developed. The equipment adopts some high and new technologies. It is equipped with high precision XYZ stage, a spindle with high rotation accuracy and variable rotation speed, a granite worktable, a block electro discharge grinding unit for machining micro rod, a ultrasonic vibration unit for workpiece vibrating, a high frequency pulse power supply for micro-ECM and a video microscopic system with high enlargement factor. The equipment can perform micro electro discharge machining (EDM), micro electrochemical machining (ECM), micro ultrasonic machining (USM) as well as their combination. It can also machine 3D microstructures. A series of experiments were carried out. Using micro-EDM, micro rods with the diameter of less than 5µm were ground on block electrode, micro holes and 3D microstructures were obtained. Shaped holes were machined by using combination of micro-EDM and micro-USM. A micro hole with the diameter of 100µm was machined via micro-ECM.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 28 ◽  
Author(s):  
Yong Liu ◽  
Minghong Li ◽  
Jingran Niu ◽  
Shizhou Lu ◽  
Yong Jiang

Fabrication of the injection nozzle micro-hole on the aero engine is a difficult problem in today’s manufacturing industry. In addition to the size requirements, the nozzle micro-hole also requires no burr, no taper and no heat-affected zone. To solve the above problem, an ultra-short voltage pulse and a high-speed rotating helical electrode were used in electrochemical drilling (ECD) process. Firstly, a theoretical model of ECD with ultra-short voltage pulse was established to investigate the effects of many predominant parameters on machining accuracy, and the effect of rotating helical electrode on the gap flow field was analyzed. Secondly, sets of experiments were carried out to investigate the effects of many key parameters on machining accuracy and efficiency. Finally, the optimized parameters were applied to machine micro holes on 500 μm thickness of GH4169 plate, and micro-holes with the diameter of 186 μm with no taper were machined at the feed rate of 1.2 μm/s. It is proved that the proposed ECD process for fabricating micro-holes with no taper has a huge potential and broad application prospects.


2018 ◽  
Vol 26 (7) ◽  
pp. 1653-1660
Author(s):  
刘 勇 LIU Yong ◽  
魏志远 WEI Zhi-yuan ◽  
邓世辉 DENG Shi-hui ◽  
李松松 LI Song-song

2009 ◽  
Vol 69-70 ◽  
pp. 229-233
Author(s):  
Ming Huan Wang ◽  
Qiao Fang Zhang ◽  
C.Y. Yao ◽  
Wei Peng

The machining of materials on microscopic scales is considered to be great importance to a wide variety of fields. Electrochemical Micro-machining (EMM) appears to be promising to machine the micro-structures in future due to the material is dissolved at the unit of ion. This paper is focused on developing a micro electrochemical machining system in which the micro-structures such as micro-cylinder, multiple micro-electrodes, micro-holes and micro-slot were processed. The micro-electrodes were prepared in a precisely controlling the electrochemical etching process. Mathematical model controlling the diameters of electrodes was built up. Furthermore, the obtained micro-electrodes were selected as the cathode tool for micro holes drilling and micro-slot milling using pulse power in Micro-ECM.


Sign in / Sign up

Export Citation Format

Share Document