Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: characterisation and modelling

2016 ◽  
Vol 87 (9-12) ◽  
pp. 3497-3512 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Steinar Raaen ◽  
Patrick Chapon
2017 ◽  
Vol 17 (2) ◽  
pp. 41-54 ◽  
Author(s):  
K. Rokosz ◽  
T. Hryniewicz ◽  
K. Pietrzak ◽  
W. Malorny

AbstractThe SEM and EDS results of porous coatings formed on pure titanium by Plasma Electrolytic Oxidation (Micro Arc Oxidation) under DC regime of voltage in the electrolytes containing of 500 g zinc nitrate Zn(NO3)2·6H2O in 1000 mL of concentrated phosphoric acid H3PO4at three voltages, i.e. 450 V, 550 V, 650 V for 3 minutes, are presented. The PEO coatings with pores, which have different shapes and the diameters, consist mainly of phosphorus, titanium and zinc. The maximum of zinc-to-phosphorus (Zn/P) ratio was found for treatment at 650 V and it equals 0.43 (wt%) | 0.20 (at%), while the minimum of that coefficient was recorded for the voltage of 450 V and equaling 0.26 (wt%) | 0.12 (at%). Performed studies have shown a possible way to form the porous coatings enriched with zinc by Plasma Electrolytic Oxidation in electrolyte containing concentrated phosphoric acid H3PO4with zinc nitrate Zn(NO3)2·6H2O.


Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Antje Schütz ◽  
Jan Heeg ◽  
Marion Wienecke ◽  
...  

Metals ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 354 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Sofia Gaiaschi ◽  
Patrick Chapon ◽  
Steinar Raaen ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2468 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Łukasz Dudek

This paper shows that the subject of porous coatings fabrication by Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), is still current, inter alia because metals and alloys, which can be treated by the PEO method, for example, titanium, niobium, tantalum and their alloys, are increasingly available for sale. On the international market, apart from scientific works/activity developed at universities, scientific research on the PEO coatings is also underway in companies such as Keronite (Great Britain), Magoxid-Coat (Germany), Mofratech (France), Machaon (Russia), as well as CeraFuse, Tagnite, Microplasmic (USA). In addition, it should be noted that the development of the space industry and implantology will force the production of trouble-free micro- and macro-machines with very high durability. Another aspect in favor of this technique is the rate of part treatment, which does not exceed several dozen minutes, and usually only lasts a few minutes. Another advantage is functionalization of fabricated surface through thermal or hydrothermal modification of fabricated coatings, or other methods (Physical vapor deposition (PVD), chemical vapor deposition (CVD), sol-gel), including also reoxidation by PEO treatment in another electrolyte. In the following chapters, coatings obtained both in aqueous solutions and electrolytes based on orthophosphoric acid will be presented; therein, dependent on the PEO treatment and the electrolyte used, they are characterized by different properties associated with their subsequent use. The possibilities for using coatings produced by means of plasma electrolytic oxidation are very wide, beginning from various types of catalysts, gas sensors, to biocompatible and antibacterial coatings, as well as hard wear coatings used in machine parts, among others, used in the aviation and aerospace industries.


2016 ◽  
Vol 49 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Steinar Raaen ◽  
Patrick Chapon ◽  
Łukasz Dudek

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Patrick Chapon ◽  
Steinar Raaen ◽  
Hugo Ricardo Zschommler Sandim

XPS and GDOES characterizations of porous coatings on tantalum after Plasma Electrolytic Oxidation (PEO) at 450 V for 3 minutes in electrolyte containing concentrated (85%) phosphoric acid with calcium nitrate and copper (II) nitrate are described. Based on the obtained data, it may be concluded that the PEO coating consists of tantalum (Ta5+), calcium (Ca2+), copper (Cu2+  and Cu+), and phosphates (PO43-). It has to be pointed out that copper and calcium are distributed throughout the volume. The authors also propose a new model of PEO, based on the derivative of GDOES signals with sputtering time.


2017 ◽  
Vol 17 (4) ◽  
pp. 55-67 ◽  
Author(s):  
K. Rokosz ◽  
T. Hryniewicz ◽  
K. Pietrzak ◽  
P. Sadlak ◽  
J. Valíček

Abstract The purpose of this work is to produce and characterize (chemical composition and roughness parameters) porous coatings enriched in calcium and phosphorus on the titanium (CP Titanium Grade 2) by plasma electrolytic oxidation. As an electrolyte, a mixture of phosphoric acid H3PO4 and calcium nitrate Ca(NO3)2·4H2O was used. Based on obtained EDS and roughness results of PEO coatings, the effect of PEO voltages on the chemical composition and surface roughness of porous coatings was determined. With voltage increasing from 450 V to 650 V, the calcium in PEO coatings obtained in freshly prepared electrolyte was also found to increase. In addition, the Ca/P ratio increased linearly with voltage increasing according to the formula Ca/P = 0.035·U+0.176 (by wt%) and Ca/P = 0.03·U+0.13 (by at%). It was also noticed that the surface roughness increases with the voltage increasing, what is related to the change in coating porosity, i.e. the higher is the surface roughness, the bigger are pores sizes obtained.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 828 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Wojciech Kacalak ◽  
Katarzyna Tandecka ◽  
Steinar Raaen ◽  
...  

To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte were determined so as to obtain porous coatings. Within the framework of this study, the PEO process was carried out at a voltage of 450 VRMS in four electrolytes containing the salt as copper(II) nitrate(V) trihydrate. Moreover, we showed that the content of salt in the electrolyte needed to obtain a porous PEO coating was in the range 300–600 g/dm3. After exceeding this amount of salts in the electrolyte, some inclusions on the sample surface were observed. It is worth noting that this limitation of the amount of salts in the electrolyte was not connected with the maximum solubility of copper(II) nitrate(V) trihydrate in the concentrated (85%) orthophosphoric acid. To characterize the obtained coatings, numerous techniques were used. In this work, we used scanning electron microscopy (SEM) coupled with electron-dispersive X-ray spectroscopy (EDS), conducted surface analysis using confocal laser scanning microscopy (CLSM), and studied the surface layer chemical composition of the obtained coatings by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), glow discharge of optical emission spectroscopy (GDOES), and biological tests. It was found that the higher the concentration of Cu(NO3)2∙3H2O in the electrolyte, the higher the roughness of the coatings, which may be described by 3D roughness parameters, such as Sa (1.17–1.90 μm) and Sp (7.62–13.91 μm). The thicknesses of PEO coatings obtained in the electrolyte with 300–600 g/dm3 Cu(NO3) 2∙3H2O were in the range 7.8 to 10 μm. The Cu/P ratio of the whole volume of coating measured by EDS was in the range 0.05–0.12, while the range for the top layer (measured using XPS) was 0.17–0.24. The atomic concentration of copper (0.54–0.72 at%) resulted in antibacterial and fungicidal properties in the fabricated coatings, which can be dedicated to biocompatible applications.


2016 ◽  
Vol 862 ◽  
pp. 86-95 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Winfried Malorny

The main goal of present paper is to obtain porous coatings enriched in copper by Plasma Electrolytic Oxidation on titanium and niobium as well as on NiTi and Ti6Al4V alloys. Performed SEM and EDS studies confirmed the hypothesis that it is possible to create the porous surfaces with pores, which shapes and size are different. In order to show the copper enrichment inside the surface layers, the copper-to-phosphorus ratios were used. Based on these ratios it may be concluded that average value of Cu/P is maximal for NiTi alloy after oxidation in electrolyte containing 300 g of copper nitrate in 1 liter of phosphoric acid and equals 0.26. The minimum of Cu/P ratio equaling to 0.12 was recorded for pure titanium and pure niobium treated in electrolyte containing 300 g of Cu (NO3)2 in 1 L H3PO4.


Sign in / Sign up

Export Citation Format

Share Document