Design and development of a CNC machining process knowledge base using cloud technology

2016 ◽  
Vol 94 (9-12) ◽  
pp. 3413-3425 ◽  
Author(s):  
Yingxin Ye ◽  
Tianliang Hu ◽  
Chengrui Zhang ◽  
Weichao Luo
2011 ◽  
Vol 308-310 ◽  
pp. 35-40
Author(s):  
Xiao Li Xu ◽  
Bin Ren ◽  
Yun Bo Zuo ◽  
Guo Xin Wu

In the high-end CNC machining process, the stability and reliability of the running state of the machining system directly affects the machining accuracy and work-piece quality. In order to effectively ensure the reliable, stable, safe operation of the high-end CNC machining system, the fault knowledge base technology construction for the cutting tool system is carried out. It focuses on the high-end CNC machine tools, and build the condition monitoring system test platform with cutting tool system as the core; the fault sample acquisition method based on the rough set theory is proposed; a knowledge base model construction technology is conducted; and the network-based sample acquisition test platform is established, so as to provide users with data information on the operation of cutting tool system, and provide the key test techniques for the generation mechanism of the dynamic performance and wear condition of the operation of cutting tool system and for the analysis of the intrinsic correlation between the characteristic parameters and wear condition of cutting tools.


2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2013 ◽  
Vol 395-396 ◽  
pp. 1008-1014
Author(s):  
Yu Li ◽  
Chao Sun

Chatter has been a problem in CNC machining process especially during machining thin-walled components with low stiffness. For accurately predicting chatter stability in machining Ti6Al4V thin-walled components, this paper establishes a chatter prediction method considering of cutting parameters and tool path. The fast chatter prediction method for thin-walled components is based on physical simulation software. Cutting parameters and tool path is achieved through the chatter stability lobes test and finite element simulation. Machining process is simulated by the physical simulation software using generated NC code. This proposed method transforms the NC physical simulation toward the practical methodology for the stability prediction over the multi-pocket structure milling.


1998 ◽  
Vol 120 (1) ◽  
pp. 13-20 ◽  
Author(s):  
R. Stevenson ◽  
D. A. Stephenson

It has been proposed several times in the metal-cutting literature that the machining process is non-unique and that the instantaneous machining conditions depend on the prior machining conditions (e.g. depth of cut, rake angle etc.). To evaluate the validity of this concept, a series of experiments was conducted using a highly accurate CNC machining center. For these experiments, the machining conditions were changed during the course of an orthogonal cutting experiment in a repeatable manner and the measured forces compared as a function of prior history. Tests were conducted on several tempers of 1100 aluminum and commercial purity zinc to evaluate the effect of material properties on the machining response. It was found that the change in measured cutting forces which could be ascribed to prior machining history was less than 3 percent and that material properties, particularly work hardening response, had no discernible effect on the magnitude of the difference.


Author(s):  
Xiao-Jin Wan ◽  
Cai-Hua Xiong ◽  
Lin Hua

In machining process, machining accuracy of part mainly depends on the position and orientation of the cutting tool with respect to the workpiece which is influenced by errors of machine tools and cutter-workpiece-fixture system. A systematic modeling method is presented to integrate the two types of error sources into the deviation of the cutting tool relative to the workpiece which determines the accuracy of the machining system. For the purpose of minimizing the machining error, an adjustment strategy of tool path is proposed on the basis of the generation principle of the cutter location source file (CLSF) in modern computer aided manufacturing (CAM) system by means of the prediction deviation, namely, the deviation of the cutting tool relative to the workpiece in computer numerical control (CNC) machining operation. The resulting errors are introduced as adjustment values to adjust the nominal tool path points from cutter location source file from commercial CAM system prior to machining. Finally, this paper demonstrates the effectiveness of the prediction model and the adjustment technique by two study cases.


2010 ◽  
Vol 126-128 ◽  
pp. 77-81
Author(s):  
Wan Shan Wang ◽  
Peng Guan ◽  
Tian Biao Yu

The future development of the manufacturing is using VR technology to make the machining simulation before the actual machining process made. The machining simulation of Ultra High-speed Grinding Machine Tool is researched in this paper. Firstly, using UG/NX software and VRML, the geometric modeling of machine tool is modeled. Secondly, through using Java and Javascript language, the operation and display of machining process of ultra high-speed grinding are realized. The main technologies include NC codes compiling, collision detection and material removal. Thirdly, the example of machining simulation using virtual ultra high-speed grinding machine tool can be obtained in the paper. Compared to other CNC machining simulation methods, the method in the paper has reality display, rich features, a good man-machine interaction, etc., and it does not rely on expensive CAD/CAM software. The system files generated by the machining simulation have the small size and can be transferred on the network easily.


Sign in / Sign up

Export Citation Format

Share Document