scholarly journals Exploitation of a novel thermo-invariant multi-feature bar for high-precision CMMs and machine tool testing

2018 ◽  
Vol 96 (1-4) ◽  
pp. 947-961
Author(s):  
F. Viprey ◽  
H. Nouira ◽  
S. Lavernhe ◽  
C. Tournier
2014 ◽  
Vol 607 ◽  
pp. 342-345
Author(s):  
Sheng Hui Zhao ◽  
Xiao Chuang Zhu ◽  
Da Wei Zhang

In order to meet the requirements of high-precision machine tool, it has been an important factor to select an appropriate way to support the bed. By building a multidisciplinary optimization (MDO) process based on iSIGHT, this article select the deformation difference of the guides and the deformation difference of the joint surface between column and bed of the machine tool as the objective functions, and then conduct a multi-objective optimization (MOO) of the positional parameters of the three-point support. Eventually the optimization result is given and the optimal position of the three-point support is determined.


2014 ◽  
Vol 687-691 ◽  
pp. 480-483
Author(s):  
Jia Xing Ma

CNC vertical lathe is the main on products. The domestic and foreign demand is also very big. The key part of the high precision is on the control of the spindle. This design is with the German SIEMENS company programmable controller (PLC), S7-200 as the main controller; Germany SIEMENS company 6 ra7075 dc speed regulator, Z4 dc speed regulating device of dc motor, dc speed control was adopted to realize efficient and accurate control of machine tool spindle, and the electrical principle diagram is given.


Author(s):  
Chengyong Zhang ◽  
Yaolong Chen

In this paper, the active-disturbance-rejection control (ADRC) is applied to realize the high-precision tracking control of CNC machine tool feed drives. First, according to the number of the feedback channel, the feed systems are divided into two types: signal-feedback system, e.g., linear motor and rotary table, and double-feedback system, e.g., ball screw feed drive with a load/table position feedback. Then, the appropriate controller is designed to ensure the closed-loop control performance of each type of system based on the idea of ADRC. In these control frameworks, the extended state observers (ESO) estimate and compensate for unmodeled dynamics, parameter perturbations, variable cutting load, and other uncertainties. For the signal-feedback system, the modified ADRC with an acceleration feedforward term is used directly to regulate the load/table position response. However, for the double-feedback system, the ADRC is applied only to the motor position control, and a simple PI controller is used to achieve the accurate position control of the load. In addition, based on ADRC feedback linearization, a novel equivalent-error-model based feedforward controller is designed to further improve the command following performance of the double-feedback system. The experimental results demonstrate that the proposed controllers of both systems have better tracking performance and robustness against the external disturbance compared with the conventional P-PI controller.


2010 ◽  
Vol 43 ◽  
pp. 238-241
Author(s):  
Ou Xie ◽  
Hua Li ◽  
Zheng Li ◽  
Zhen Yin

A design solution of machine tool control system and its hardware and software design were proposed for the requirement of high precision internal grinding. The ARM microprocessor was used as the system control center and the technical grade touch screen was used as the human machine interface. The feed motion of the X, Z 2-axis servo motor was controlled by the system to complete the grinding path, and the machine tool switching signal was controlled by the Soft PLC Technology. The whole system has the advantage of stable, high performance and user friendly, meeting the requirement of high precision grinding.


2016 ◽  
Vol 48 (12) ◽  
Author(s):  
Shih-Ming Wang ◽  
Zhe-Zhi Ye ◽  
Chin-Cheng Yeh ◽  
Hariyanto Gunawan ◽  
Hung-Sheng Chiu

2019 ◽  
Vol 12 (2) ◽  
pp. 125-137
Author(s):  
Ye Dai ◽  
Wen-Qiang Wei ◽  
Xue-Liang Zhang ◽  
Yun-Shan Qi

Background: As one of the core components of high-speed CNC machine tool, high-speed motorized spindle is the core functional component of high precision CNC machine tool, which has become the key research and development object of the world. Objective: By comparing and discussing the patents of high-speed motorized spindle, some valuable conclusions have been drawn to predict the future research and development of high-speed motorized spindle. Methods: By analyzing the characteristics of high-speed motorized spindle structure, the influence of high-speed motorized spindle on high-speed machining technology was explicated. Combining with the key technology of high-speed motorized spindle, the patents related to high-speed motorized spindle structure were used for investigation. Results: With the rapid development of high-speed cutting and numerical control technology and the need of practical application, the requirement for high-speed spindle performance has increased. Motorized spindle technology has the characteristics of high speed, high strength, high power, high torque and low speed, high precision, high reliability and long life, offering diversified bearing and lubrication cooling methods and serving as an intelligent system. Conclusion: The different levels of improvement and renovation of the structure with high-speed motorized spindle, by adding lubrication and cooling device to the spindle have improve the performance of spindle, addressing the loopholes in the technology and making it more practical.


2006 ◽  
Vol 2006.43 (0) ◽  
pp. 177-178
Author(s):  
Ryoji HATTORI ◽  
Hiroshi TACHIYA ◽  
Naoki ASAKAWA ◽  
Yoshiyuki KANEKO ◽  
Hiroshi YACHI

Sign in / Sign up

Export Citation Format

Share Document