Global sensitivity analyses of a selective laser melting finite element model: influential parameters identification

2018 ◽  
Vol 99 (1-4) ◽  
pp. 833-843 ◽  
Author(s):  
Claire Bruna-Rosso ◽  
Ali Gökhan Demir ◽  
Maurizio Vedani ◽  
Barbara Previtali
Author(s):  
Arman Ahmadi ◽  
Narges Shayesteh Moghaddam ◽  
Mohammad Elahinia ◽  
Haluk E. Karaca ◽  
Reza Mirzaeifar

Selective laser melting (SLM) is an additive manufacturing technique in which complex parts can be fabricated directly by melting layers of powder from a CAD model. SLM has a wide range of application in biomedicine and other engineering areas and it has a series of advantages over traditional processing techniques. A large number of variables including laser power, scanning speed, scanning line spacing, layer thickness, material based input parameters, etc. have a considerable effect on SLM process materials. The interaction between these parameters is not completely studied. Limited studies on balling effect in SLM, densifications under different processing conditions, and laser re-melting, have been conducted that involved microstructural investigation. Grain boundaries are amongst the most important microstructural properties in polycrystalline materials with a significant effect on the fracture and plastic deformation. In SLM samples, in addition to the grain boundaries, the microstructure has another set of connecting surfaces between the melt pools. In this study, a computational framework is developed to model the mechanical response of SLM processed materials by considering both the grain boundaries and melt pool boundaries in the material. To this end, a 3D finite element model is developed to investigate the effect of various microstructural properties including the grains size, melt pools size, and pool connectivity on the macroscopic mechanical response of the SLM manufactured materials. A conventional microstructural model for studying polycrystalline materials is modified to incorporate the effect of connecting melt pools beside the grain boundaries. In this model, individual melt pools are approximated as overlapped cylinders each containing several grains and grain boundaries, which are modeled to be attached together by the cohesive zone method. This method has been used in modeling adhesives, bonded interfaces, gaskets, and rock fracture. A traction-separation description of the interface is used as the constitutive response of this model. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the material inside the grains. For the experimental verification, stainless steel 316L flat dog bone samples are fabricated by SLM and tested in tension. During fabrication, the power of laser is constant, and the scan speed is changed to study the effect of fabrication parameters on the mechanical properties of the parts and to compare the result with the finite element model.


Author(s):  
Fatemeh Khatibi ◽  
Morteza Esmaeili ◽  
Saeed Mohammadzadeh

In this paper, the effect of ballast properties including ballast depth, shoulder width, shoulder height, inter particle friction angle and ballast porosity on track buckling capacity are investigated numerically using discrete element method (DEM) analysis. First, a Single Tie Push Test (STPT) is simulated using DEM and the results are validated with field data. Then a sensitivity analyses is carried out. To investigate the effect of ballast properties on buckling capacity, the STPT responses according to the DEM analysis are introduced as a lateral track stiffness into a finite element model of continuously welded rail track, and a thermal buckling simulation is performed. The results show a significant effect of ballast porosity on buckling temperature.


Author(s):  
Celso P. Pesce ◽  
Clo´vis A. Martins ◽  
Alfredo Gay Neto ◽  
Andre´ L. C. Fujarra ◽  
Fernanda C. M. Takafuji ◽  
...  

The present paper brings together theoretical predictions and experimental results, comparing crushing tests results as well as carcass wet collapse tests. The theoretical models are of two kinds: (i) numerical (FE) and (ii) analytical. The first kind is a restricted 3D version of a finite element model. The second kind is based on classic assumptions of equivalent ring behavior. Discussion is made on the real yield stress value to be adopted, as well as on the pertinence of geometric hypotheses. Sensitivity analyses, regarding ovalization and helical pitch are also presented.


Author(s):  
Gregory A. Banyay ◽  
Stephen D. Smith ◽  
Jason S. Young

The structures associated with the nuclear steam supply system (NSSS) of a pressurized water reactor (PWR) warrant evaluation of various non-stationary loading conditions which could occur over the life of a nuclear power plant. These loading conditions include those associated with a loss of coolant accident and seismic event. The dynamic structural system is represented by a finite element model consisting of significant epistemic and aleatory uncertainties in the physical parameters. To provide an enhanced understanding of the influence of these uncertainties on model results, a sensitivity analysis is performed. This work demonstrates the construction of a computational design of experiment which runs the finite element model a sufficient number of times to train and verify a unique aggregate surrogate model. Adaptive sampling is employed in order to reduce the overall computational burden. The surrogate model is then used to perform both global and local sensitivity analyses.


2021 ◽  
Vol 42 (4) ◽  
Author(s):  
Yu Zhan ◽  
Enda Zhang ◽  
Peng Fan ◽  
Jiateng Pan ◽  
Changsheng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document