Tool wear characterization in high-speed milling of titanium metal matrix composites

2018 ◽  
Vol 100 (9-12) ◽  
pp. 2901-2913 ◽  
Author(s):  
Saeid Kamalizadeh ◽  
Seyed Ali Niknam ◽  
Alireza Asgari ◽  
Marek Balazinski
2010 ◽  
Vol 33 ◽  
pp. 200-203 ◽  
Author(s):  
Y.J. Wang ◽  
Ming Zhou ◽  
S.N. Huang ◽  
Y.J. Zhang

This paper presents an experimental study in high speed milling of metal matrix composites (MMCs). Machining tests were carried out on a high speed milling machine by using TiAlN coated tools and chemical vapour deposition (CVD) diamond coated tools. The cutting tool wear was investigated using an optical microscope and a scanning electron microscope (SEM). The experimental results showed that flank wear is the dominant tool wear mode and abrasive wear and adhesive wear appears to be the main wear mechanism. The build-up edge (BUE) exists during the machining process at a certain speeds. Cutting speed is a dominant factor affecting the flank wear. Generally, high cutting speed lead to severe tool wear, but there seemed to be a certain cutting speed which will cause the least tool wear. Furthermore, there exists a cutting speed limit for both TiAlN coated tools and CVD coated diamond tools in high speed milling of MMCs, beyond which the edge chipping will cause the tool failure very soon.


2012 ◽  
Vol 499 ◽  
pp. 9-14
Author(s):  
Ying Fei Ge ◽  
Jiu Hua Xu ◽  
Y.C. Fu ◽  
S. Zhang ◽  
W.L. Bian

Particle reinforced metal matrix composites (PMMC) possess many outstanding properties and are increasingly applied in automobile, aerospace, electronics and medical industries. However, PMMC is a typical difficult-to-machining material due to the rapid tool wear rate and excessive machining induced defects. Although large amount of investigations have been done on the conventional machining of PMMC, merely several researchers have dedicated themselves to the study of milling, especially high speed milling of this material. Within the milling studies, most researchers have selected the carbide coated or uncoated solid carbide tools whose tool life was not satisfactory for engineering application. The literatures review indicates that most researchers limited their study to sintering or casting SiCp/Al composites at the low or moderate cutting speed. Material produced by the in-situ reaction method or titanium matrix composites was seldom selected as the research object. The research content was limited to the effect of cutting parameters on the machined surface quality or cutting forces. It is suggested that high-speed milling with PCD tool should be conducted in order to improve the machined surface quality and material removal rate and decrease the machining cost. Tool life modeling, surface roughness prediction, cutting parameters optimization and high-speed milling data base and the expert system should be greatly noticed by the researchers.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1459
Author(s):  
Masoomeh Safavi ◽  
Marek Balazinski ◽  
Hedayeh Mehmanparast ◽  
Seyed Ali Niknam

Metal-matrix composites (MMCs) are made of non-metallic reinforcements in metal matrixes, which have excellent hardness, corrosion, and wear resistance. They are also lightweight and may pose a higher strength-to-weight ratio as compared to commercial titanium alloys. One of the MMCs with remarkable mechanical properties are titanium metal matrix composites (Ti-MMCs), which are considered a replacement for super-alloys in many industrial products and industries. Limited machining and machinability studies of Ti-MMCs were reported under different cutting and lubrication conditions. Tool wear morphology and life are among the main machinability attributes with limited attention. Therefore, this study presents the effects of cutting and lubrication conditions on wear morphology in carbide inserts when turning Ti-MMCs. To that end, maximum flank wear (VB) and cutting forces were recorded, and the wear morphologies within the initial period of the cut, as well as the worn condition, were studied under dry and wet conditions. Experimental results denoted that despite the lubrication mode used, abrasion, diffusion, and adhesion mechanisms were the main wear modes observed. Moreover, built-up layer (BUL) and built-up edge (BUE) were the main phenomena observed that increase the tendency of adhesion at higher cutting times.


2013 ◽  
Vol 589-590 ◽  
pp. 100-105
Author(s):  
Ke Ru Jiao ◽  
Shu Tao Huang ◽  
Li Fu Xu ◽  
Li Zhou

By 3D finite element simulation for temperature field and tool wear of SiCp/Al metal matrix composites under the condition of high speed milling, we draw a conclusion that the most significant influence on cutting temperature is cutting speed, less is feed rates, the minimum is cutting depth, which is exactly the same as the influence law of ordinary metal cutting. In the course of high-speed milling SiCp/Al by PCD tools, the higher the cutting speed is, the bigger wearing depth of tools is. When v=300m/min, ap=0.5 mm, f=0.3 mm/r, the transient temperature in the milling would reach to 619°C. Such a high temperature can cause graphitizing wear of the PCD tools. Because of the effectiveness of the simulation’s conclusion, it is vital significance to the reasonable options of cutting parameters and the prolongation of tool life.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5011
Author(s):  
Cécile Escaich ◽  
Zhongde Shi ◽  
Luc Baron ◽  
Marek Balazinski

The TiC particles in titanium metal matrix composites (TiMMCs) make them difficult to machine. As a specific MMC, it is legitimate to wonder if the cutting mechanisms of TiMMCs are the same as or similar to those of MMCs. For this purpose, the tool wear mechanisms for turning, milling, and grinding are reviewed in this paper and compared with those for other MMCs. In addition, the chip formation and morphology, the material removal mechanism and surface quality are discussed for the different machining processes and examined thoroughly. Comparisons of the machining mechanisms between the TiMMCs and MMCs indicate that the findings for other MMCs should not be taken for granted for TiMMCs for the machining processes reviewed. The increase in cutting speed leads to a decrease in roughness value during grinding and an increase of the tool life during turning. Unconventional machining such as laser-assisted turning is effective to increase tool life. Under certain conditions, a “wear shield” was observed during the early stages of tool wear during turning, thereby increasing tool life considerably. The studies carried out on milling showed that the cutting parameters affecting surface roughness and tool wear are dependent on the tool material. The high temperatures and high shears that occur during machining lead to microstructural changes in the workpiece during grinding, and in the chips during turning. The adiabatic shear band (ASB) of the chips is the seat of the sub-grains’ formation. Finally, the cutting speed and lubrication influenced dust emission during turning but more studies are needed to validate this finding. For the milling or grinding, there are major areas to be considered for thoroughly understanding the machining behavior of TiMMCs (tool wear mechanisms, chip formation, dust emission, etc.).


2009 ◽  
Vol 52 (4) ◽  
pp. 322-328 ◽  
Author(s):  
I. Montealegre-Melendez ◽  
E. Neubauer ◽  
H. Danninger

Sign in / Sign up

Export Citation Format

Share Document