Comparative study on the cutting performance of self-propelled rotary cutters and indexable cutters in milling TC11 titanium alloy

2020 ◽  
Vol 111 (9-10) ◽  
pp. 2749-2758
Author(s):  
Tao Chen ◽  
Yongsheng Wang ◽  
Weijie Gao ◽  
Rui Li
2018 ◽  
Vol 385 ◽  
pp. 449-454 ◽  
Author(s):  
Artem Alimov ◽  
Dmitry Zabelyan ◽  
Igor Burlakov ◽  
Igor Korotkov ◽  
Yuri Gladkov

Finite element method is the most powerful tool for development and optimization of the metal forming processes. Analysis of titanium alloy critical parts should include the prediction of microstructure since their mechanical and technological properties essentially depend on the type and parameters of the microstructure. The technological process of parts production for aerospace applications is multi-operational and consists of deformation, heating and cooling stages. Therefore, it is necessary to simulate the microstructure evolution to obtain high quality parts. In presented paper FE simulation coupled with microstructure evolution during hot forging of TC11 titanium alloy has been performed by QForm FEM code. Constitutive relationships, friction conditions and microstructure evolution model have been established using the experiments. The kinetics of phase transformations has been described by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) phenomenological model. The approach is illustrated by industrial case study that proved its practical applicability and economic advantages for technology development of titanium alloy critical parts.


2021 ◽  
Vol 1035 ◽  
pp. 602-607
Author(s):  
Zhi Hua Feng ◽  
Xian Fei Ding ◽  
Xin Feng ◽  
Hai Nan ◽  
Ai Bin Zhang

A comparative study of the surface contaminated layer formed by chemical reaction between ceramic-mold and titanium aluminum alloy castings or titanium alloy castings were carried out. The morphology, thickness and hardness of the surface contaminated layer were characterized by means of metalloscopy and microhardness measurement. The results show that surface contaminated layers formed between Ti-Al alloy castings and ceramic-mold, also formed between Ti alloy castings and ceramic-mold. The surface contaminated layers of Ti-Al alloy castings were continuous and compact, their thickness was about 0~90 μm. The surface contaminated layers of titanium alloy castings were not even, their thickness was 0~900 μm. Titanium alloy is more liable to react with the ceramic -mold than the Ti-Al alloy.


2012 ◽  
Vol 39 (2) ◽  
pp. 0203005 ◽  
Author(s):  
宫新勇 Gong Xinyong ◽  
刘铭坤 Liu Mingkun ◽  
李岩 Li Yan ◽  
张永忠 Zhang Yongzhong

Sign in / Sign up

Export Citation Format

Share Document