scholarly journals Addressing Hazardous Implications of Additive Manufacturing: Complementing Life Cycle Assessment with a Framework for Evaluating Direct Human Health and Environmental Impacts

2017 ◽  
Vol 21 (S1) ◽  
pp. S25-S36 ◽  
Author(s):  
Justin Bours ◽  
Brian Adzima ◽  
Susan Gladwin ◽  
Julia Cabral ◽  
Serena Mau
2015 ◽  
Vol 21 (1) ◽  
pp. 14-33 ◽  
Author(s):  
Jeremy Faludi ◽  
Cindy Bayley ◽  
Suraj Bhogal ◽  
Myles Iribarne

Purpose – The purpose of this study is to compare the environmental impacts of two additive manufacturing machines to a traditional computer numerical control (CNC) milling machine to determine which method is the most sustainable. Design/methodology/approach – A life-cycle assessment (LCA) was performed, comparing a Haas VF0 CNC mill to two methods of additive manufacturing: a Dimension 1200BST FDM and an Objet Connex 350 “inkjet”/“polyjet”. The LCA’s functional unit was the manufacturing of two specific parts in acrylonitrile butadiene styrene (ABS) plastic or similar polymer, as required by the machines. The scope was cradle to grave, including embodied impacts, transportation, energy used during manufacturing, energy used while idling and in standby, material used in final parts, waste material generated, cutting fluid for CNC, and disposal. Several scenarios were considered, all scored using the ReCiPe Endpoint H and IMPACT 2002+ methodologies. Findings – Results showed that the sustainability of additive manufacturing vs CNC machining depends primarily on the per cent utilization of each machine. Higher utilization both reduces idling energy use and amortizes the embodied impacts of each machine. For both three-dimensional (3D) printers, electricity use is always the dominant impact, but for CNC at maximum utilization, material waste became dominant, and cutting fluid was roughly on par with electricity use. At both high and low utilization, the fused deposition modeling (FDM) machine had the lowest ecological impacts per part. The inkjet machine sometimes performed better and sometimes worse than CNC, depending on idle time/energy and on process parameters. Research limitations/implications – The study only compared additive manufacturing in plastic, and did not include other additive manufacturing technologies, such as selective laser sintering or stereolithography. It also does not include post-processing that might bring the surface finish of FDM parts up to the quality of inkjet or CNC parts. Practical implications – Designers and engineers seeking to minimize the environmental impacts of their prototypes should share high-utilization machines, and are advised to use FDM machines over CNC mills or polyjet machines if they provide sufficient quality of surface finish. Originality/value – This is the first paper quantitatively comparing the environmental impacts of additive manufacturing with traditional machining. It also provides a more comprehensive measurement of environmental impacts than most studies of either milling or additive manufacturing alone – it includes not merely CO2 emissions or waste but also acidification, eutrophication, human toxicity, ecotoxicity and other impact categories. Designers, engineers and job shop managers may use the results to guide sourcing or purchasing decisions related to rapid prototyping.


Author(s):  
Harsha Malshe ◽  
Hari Nagarajan ◽  
Yayue Pan ◽  
Karl Haapala

Additive manufacturing has emerged as an arena that is receiving intense interest from numerous technology domains, traditional and non-traditional manufacturers. With this growing interest, concerns have arisen regarding the relative performance of these novel processes compared to conventional techniques from economic, environmental, and social perspectives. Sustainability-related benefits can be realized through additive manufacturing, and it is often promoted as a sustainable technology. For appropriate future development and application, however, it will be important to understand relative costs, environmental impacts, and human health effects of processes and materials. Prior research addressing sustainability and additive manufacturing is briefly reviewed. A life cycle assessment is then conducted to understand the environmental performance of a novel additive manufacturing process known as fast mask-image-projection based stereolithography (Fast MIP-SL). In Fast MIP-SL, projection light is patterned by a digital micromirror device as a mask image to selectively cure liquid photopolymer resin, and a two-way movement design is adopted to quickly recoat material. The cradle-to-gate life cycle assessment considers the impacts related to the curing of one resin type and the consumption of electricity in the production of parts of various geometries. Using the ReCiPe 2008 method (hierarchist weighting), it is found that damage to resource availability dominates ecosystems and human health damage types for each part assessed.


2019 ◽  
Vol 122 ◽  
pp. 05003
Author(s):  
Isara Muangthai ◽  
Sue J. Lin

The electricity generation is vital to industries and economic development in Thailand. In this study, the input-output life cycle assessment (IO-LCA) is applied to estimate the direct and indirect impacts from the power generation sector for the years 2005 and 2010. Based on the input-output analysis, more than 90% of the total environmental impact of Thailandʼs power sector involves ten relevant sectors. Results reveal that the most significant environmental damage was on natural resources followed by human health, climate change, and ecosystem quality. The most dominant environmental impacts were non-renewable energy, global warming and respiratory inorganic effects. Furthermore, the power sector, which accounts for 80% and 61% of total each impact in 2010 respectively, had a large direct impact on climate change and human health. On the contrary, the coal and lignite, and metal ore sectors contributed significantly to indirect impacts on ecosystem quality and resources. Regarding the results, some additional suggestions can be made to improve current policies in Thailand, including the implementation of green manufacturing in the iron and steel production, and installing control devices in all power plant units. Consequently, IO-LCA can be applied to other industries for assessing their total environmental impacts, and planning CO2 mitigation strategies.


2019 ◽  
Vol 9 (1) ◽  
pp. 674-682
Author(s):  
Jan Výtisk ◽  
Vladimír Kočí ◽  
Stanislav Honus ◽  
Mojmír Vrtek

AbstractAdditive manufacturing (AM) is a manufacturing process that allows for the creation of a physical object from a digital model. Additive manufacturing has a number of advantages over the conventional methods, inter alia the production of very complex machinery components, and a lower consumption of raw materials. Thanks to these advantages, the technology has been booming recently. The paper compares the advantages and disadvantages of additive technologies in the context of environmental impacts using Life Cycle Assessment (LCA). The paper describes the most important aspects of additive manufacturing, reviews the basic principles and phases of LCA method, including its application in AM, and outlines selected publications dealing with LCA and additive technologies. In conclusion, we recommend the most suitable methodologies to assess environmental impacts of additive technologies. To be specific, LCA is suitable to assess AM as for the material and energy flows, and in general, research in this field is considered highly promising.


Author(s):  
V. Russo ◽  
A. E. Strever ◽  
H. J. Ponstein

Abstract Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.


2021 ◽  
Vol 11 (7) ◽  
pp. 2964
Author(s):  
Gregor Braun ◽  
Claudia Som ◽  
Mélanie Schmutz ◽  
Roland Hischier

The textile industry is recognized as being one of the most polluting industries. Thus, the European Union aims to transform the textile industry with its “European Green Deal” and “Circular Economy Action Plan”. Awareness regarding the environmental impact of textiles is increasing and initiatives are appearing to make more sustainable products with a strong wish to move towards a circular economy. One of these initiatives is wear2wearTM, a collaboration consisting of multiple companies aiming to close the loop for polyester textiles. However, designing a circular product system does not lead automatically to lower environmental impacts. Therefore, a Life Cycle Assessment study has been conducted in order to compare the environmental impacts of a circular with a linear workwear jacket. The results show that a thoughtful “circular economy system” design approach can result in significantly lower environmental impacts than linear product systems. The study illustrates at the same time the necessity for Life Cycle Assessment practitioners to go beyond a simple comparison of one product to another when it comes to circular economy. Such products require a wider system analysis approach that takes into account multiple loops, having interconnected energy and material flows through reuse, remanufacture, and various recycling practices.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2021 ◽  
Vol 13 (7) ◽  
pp. 3856
Author(s):  
Rebeka Kovačič Lukman ◽  
Vasja Omahne ◽  
Damjan Krajnc

When considering the sustainability of production processes, research studies usually emphasise environmental impacts and do not adequately address economic and social impacts. Toy production is no exception when it comes to assessing sustainability. Previous research on toys has focused solely on assessing environmental aspects and neglected social and economic aspects. This paper presents a sustainability assessment of a toy using environmental life cycle assessment, life cycle costing, and social life cycle assessment. We conducted an inventory analysis and sustainability impact assessment of the toy to identify the hotspots of the system. The main environmental impacts are eutrophication, followed by terrestrial eco-toxicity, acidification, and global warming. The life cycle costing approach examined the economic aspect of the proposed design options for toys, while the social assessment of the alternative designs revealed social impacts along the product life cycle. In addition, different options based on the principles of the circular economy were analysed and proposed in terms of substitution of materials and shortening of transport distances for the toy studied.


Sign in / Sign up

Export Citation Format

Share Document