Hydrodynamic action in slicing PV polysilicon with a novel fixed and free abrasive combined wire sawing

2021 ◽  
Vol 114 (1-2) ◽  
pp. 509-523
Author(s):  
Tianzhao Pu ◽  
Yufei Gao ◽  
Youkang Yin ◽  
Liyuan Wang
2010 ◽  
Vol 447-448 ◽  
pp. 183-187 ◽  
Author(s):  
Zhen Yu Zhang ◽  
Rudy Irwan ◽  
Han Huang

Surface characteristics of CZT wafers machined using wire sawing, free abrasives lapping and polishing and ultra-precision grinding were investigated. Wire sawing resulted in the removal of material in both ductile and brittle regimes, but both polishing and grinding led to a ductile removal. The grinding produced very smooth surfaces free of embeddings and scratches, which is thus considered to have better machinability than the free abrasive machining. The nanoindentation and nanoscratch on MCT wafers at nanometric scales resulted in considerable plastic deformation, but no fracture features. The hardness of the MCT wafer was 500 to 550 MPa, and the coefficient of friction was particularly high, ranging from 0.45 to 0.55.


2000 ◽  
Vol 123 (3) ◽  
pp. 254-259 ◽  
Author(s):  
Fuqian Yang ◽  
Imin Kao

Wiresaw has emerged as a leading technology in wafer preparation for microelectronics fabrication, especially in slicing large silicon wafers (diameter⩾300 mm) for both microelectronic and photovoltaic applications. Wiresaw has also been employed to slice other brittle materials such as alumina, quartz, glass, and ceramics. The manufacturing process of wiresaw is a free abrasive machining (FAM) process. Specifically, the wiresaw cuts brittle materials through the “rolling-indenting” and “scratch-indenting” processes where the materials removal is resulting from mechanical interactions between the substrate of the workpiece and loss abrasives, which are trapped between workpiece and wire. Built upon results of previous investigation in modeling of wiresaw, a model of wiresaw slicing is developed based on indentation crack as well as the influence of wire carrying the abrasives. This model is used to predict the relationship between the rate of material removal and the mechanical properties of the workpiece together with the process parameters. The rolling, indenting, and scratching modes of materials removal are considered with a simple stochastic approach. The model provides us with the basis for improving the efficiency of the wiresaw manufacturing process based on the process parameters.


2006 ◽  
Vol 315-316 ◽  
pp. 541-545
Author(s):  
Ya Dong Gong ◽  
H. Li ◽  
X.X. Zhao ◽  
Wan Shan Wang

It analyzed the conditions in hydrodynamic action of coolant in super high speed grinding area and described the conception of lubricate induce force in the paper. Using fluid dynamical lubrication theory, theory analyses and mathematics modeling on lubricate induce force in plane grinding with non-porous grinding wheel were carried out, also the computer simulations were done, and the conclusion was theoretically verified by tests in interrelated material documents. On the bases of this, by analyzing the effects of parameters and pointing out grinding wheel speed, grinding wheel width significantly influences the max dynamic pressure in grinding area, thus the analyses indicated that it rises with the speed of grinding wheel increasing.


Sign in / Sign up

Export Citation Format

Share Document