Determination of the grinding force on optical glass based on a diamond wheel with an ordered arrangement of abrasive grains

Author(s):  
Zhibo Yang ◽  
Dongyu He ◽  
WangSun ◽  
Yuqi Zhang ◽  
Shiyu Zhang ◽  
...  
2010 ◽  
Vol 126-128 ◽  
pp. 573-578 ◽  
Author(s):  
Yong Bo Wu ◽  
Zhi Qiang Liang ◽  
Xi Bin Wang ◽  
Wei Min Lin

This paper describes the wear behaviors of a resin bond diamond wheel in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire. The EUAG is a new grinding method proposed by the present authors in which an elliptical ultrasonic vibration is imposed on the workpiece by using an elliptical ultrasonic vibrator. In our previous work, an experimental apparatus mainly composed of the vibrator was produced and grinding experiments were conducted involving sapphire workpiece. In this paper, further investigations focusing on the wear behaviors of resin bond diamond wheel in EUAG of sapphire were carried out experimentally. The obtained results showed that: (1) the wheel wear process can be divided to three regions according to the variation trend of grinding forces, i.e., an initial region, a steady region, and a deteriorated region; (2) in the initial and steady regions, the grinding forces and the ratio of the normal grinding force to the tangential grinding force in EUAG are much smaller than that in conventional grinding (CG), but in deteriorated region, the grinding forces in EUAG are increased significantly up to be larger than that in CG whereas the grinding forces ratio has few difference between those in EUAG and CG; (3) in all the regions, the work-surface in EUAG is much smoother than that in CG whereas the wheel wear has little influence on the work-surface roughness; (4) the wheel wear in CG is mainly caused by the attrition wear and the macro-fracture and pullout of abrasive grains, while in EUAG by the micro-fracture and cleavage of abrasive grains.


2016 ◽  
Vol 1136 ◽  
pp. 30-35
Author(s):  
He Wang ◽  
Ke Zhang ◽  
Yu Hou Wu ◽  
Hong Song

The zirconia parts are limited by machined surface quality. The grinding force is one of the most important parameters of grinding and has effects on surface quality. The MK2710 grinder and resin bond diamond wheels were used in zirconia grinding. The grinding force was obtained by Kistler dynamometer. The paper focused on wheel speed and grain size on grinding force, and examined the surface by SEM. The research results indicated that decreasing the grain size, the grinding force increased and the surface quality improved, and increasing wheel speed could decrease grinding force to improve grinding surface quality. The results can improve zirconia ceramic parts surface quality and promote application.


Author(s):  
Zhenguo Nie ◽  
Gang Wang ◽  
Liping Wang ◽  
Yiming (Kevin) Rong

Abstract In this research, we propose a coupled thermomechanical modeling method for predicting grinding residual stress based on randomly distributed grains. In order to deal with the problem that the nominal grinding force is too small to generate the plastic deformation, we hold the opinion that grinding residual stress is totally derived from three factors: thermal stress, the nominal grinding force (pressure) over the entire grinding zone, and the equivalent plowing force just under the bottom of the abrasive wheel. Finite element model (FEM) simulation of the single-grain grinding (SGG) is conducted to obtain the critical plowing depth and the SGG force at an arbitrary cutting depth. Based on the randomly distributed abrasive grains, the equivalent grinding heat source model, the equivalent SGG plowing force model, and the equivalent nominal pressure model are all established. A 2D coupled thermomechanical model is established to simulate the grinding process for temperature fields and grinding residual stress fields. In addition, verification tests are conducted to validate the model. It turns out that the coupled model can accurately predict the multiphysical fields on both temperature and residual stress. Based on the simulation results of the model, the generation mechanism of grinding residual stress is quantitatively studied. This research provides a promising pathway to residual stress control of grinding.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhang Jianhua ◽  
Zhao Yan ◽  
Zhang Shuo ◽  
Tian Fuqiang ◽  
Guo Lanshen ◽  
...  

Ultrasonic vibration assisted micro end grinding (UAMEG) is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG) of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.


Sign in / Sign up

Export Citation Format

Share Document