In-line monitoring of focus shift by kerf width detection with coaxial thermal imaging during laser cutting

Author(s):  
Ema Vasileska ◽  
Matteo Pacher ◽  
Barbara Previtali
Author(s):  
Moo-Keun Song ◽  
Jong-Do Kim ◽  
Dong-Sig Shin ◽  
Su-Jin Lee ◽  
Dae-Won Cho

In this study, the parameters for underwater laser cutting of 50-mm thick stainless steel, which is typically used in nuclear power structures, are investigated. The focal position of laser beam significantly affects the cutting quality. In particular, in the cutting of the thick sample, change in the focal position determines the kerf width and the roughness of the cut surface. Moreover, the effects of the variation of kerf width and the cut surface characteristics on the focal position of the laser beam are investigated. As the focal position moved to the inside of the material, the upper kerf width increased, but the quality of the cut surface was improved.


2012 ◽  
Vol 445 ◽  
pp. 442-447 ◽  
Author(s):  
Bekir Sami Yilbas ◽  
S.S. Akhtar ◽  
E. Bayraktar ◽  
Zuhair M. Gasem

2019 ◽  
Vol 9 (1) ◽  
pp. 205 ◽  
Author(s):  
Dongkyoung Lee ◽  
Byungmoon Oh ◽  
Jungdon Suk

Lithium-Ion Batteries (LIB) are growing in popularity for many applications. Much research has been focusing on battery performance improvement. However, few studies have overcome the disadvantages of the conventional LIB manufacturing processes. Laser cutting of electrodes has been applied. However, the effect of electrodes’ chemical, physical, and geometrical characteristics on the laser cutting has not been considered. This study proposes the effect of compression of cathode on laser cutting for lithium-ion batteries. The kerf width and top width of the specimens with laser irradiation are measured and the material removal energy is obtained. Observations of SEM photographs and absorptivity measurements are conducted. Increasing volume energies causes logarithmic increases in the kerf and top width. It is observed that the compressed cathode forms a wider kerf width than the uncompressed cathode under the same laser parameters. The top width of the uncompressed cathode is wider than the uncompressed cathode. The compression has a favorable effect on uniform cutting and selective removal of an active electrode.


2016 ◽  
Vol 78 (7) ◽  
Author(s):  
Abdul Fattah Mohamad Tahir ◽  
Ahmad Razelan Rashid

Development of new material known as Ultra High Strength Steel (UHSS) able to improve the vehicle mass thus reflecting better fuel consumption. Transformation into high strength steel has been a significant drawback in trimming the UHSS into its final shape thus laser cutting process appeared to be the solution. This study emphasizes the relationship between Carbon Dioxide (CO2) laser cutting input parameters on 22MnB5 boron steel focusing on the kerf width formation and Heat Affected Zone (HAZ). Experimental research with variation of laser power, cutting speed and assisted gas pressure were executed to evaluate the responses. Metrological and metallographic evaluation of the responses were made on the outputs that are the kerf width formation and HAZ.  Positive correlation for power and negative interaction for cutting speed were found as the major factors on formation of the kerf. For the HAZ formation, thicker HAZ were formed as bigger laser power were applied to the material. Cutting speed and gas pressure does not greatly influence the HAZ formation for 22MnB5 boron steel.


Author(s):  
K Moghadasi ◽  
KF Tamrin

Numerical modeling offers considerable promise to reduce costs associated with trial-and-error process in the manufacturing industry. In laser cutting of fiber-reinforced composites, the developed thermal stress in the cut region has considerable influence on the application of the machined composite and the end product quality. Nevertheless, measurement of the thermal stress is quite challenging in practice. Here, an uncoupled thermo-mechanical finite element model is developed to accurately predict formation of heat-affected zone, kerf width, thermal field, and thermal residual stress of an anisotropic carbon/Kevlar fiber reinforced composite during multi-pass laser cutting process. A novel approach of element deletion incorporating temperature-dependent Hashin failure criteria and VUMAT subroutine is proposed. The study is carried out using Abaqus interlinked with Fortran compiler to define laser Gaussian beam (DFLUX subroutine) and material removal (VUMAT subroutine) for determining the temperature gradient and cut characteristics, respectively. The numerical results agree well with the experimental scanning electron micrographs of heat-affected zone and kerf width. In addition, residual temperature after subsequent pass results in greater temperature distribution and heat accumulation. It has also been established that the strength of composite gradually decays with the increase of temperature due to stiffness (elastic moduli) degradation in the area of the cutting zone, accelerating damage initiation in both fibers and matrix.


2014 ◽  
Vol 998-999 ◽  
pp. 526-529
Author(s):  
Zhan Guo Li ◽  
Yao Chen Shi ◽  
Wei Yuan ◽  
Xiu Guang Yang

Due to complexity of laser cutting process and its many influence factors, this paper puts forward the evaluation method of laser cutting quality based on the difference of average upper and under kerf width from four points in two lines, systematically analyzes the influence rule and the influence degree of cutting speed, laser power, pulse width, repetition frequency on kerf width by laser cutting experimental study of 1Cr17Mn6Ni5N steel plates and provides a new method for evaluation of laser cutting quality and selection of optimal cutting parameters.


2016 ◽  
Vol 16 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Anish Kumar ◽  
Vinod Kumar ◽  
Gaurav Sharma

AbstractIn laser cutting, the capability of laser cutting mainly depends on optical and thermal properties of work material. The surface quality and metallurgical properties of the product is most important from the point of laser cutting quality. The present research work explores the modeling and optimization of laser beam cutting process parameters by using hybrid approach of Taguchi based fuzzy logic. The multi-response optimization of process parameters has been done to improve geometrical accuracy by minimizing the kerf width and kerf deviation. The four input parameters power, gas pressure, feed rate, pulse frequency and three output parameters kerf width (KW), kerf deviation (KD) and material removal rate (MRR) have been taken for the experimentation work. The S/N ratios taken for the KW and KD is of the smaller-the-better type and MRR is of the higher the better type. The predicting fuzzy logic model is implemented on Fuzzy Logic Toolbox of MATLAB using Mamdani technique. The fuzzy logic theory has been applied to compute the fuzzy multi-response performance index (FMRPI). This performance index is further used for multi-objective optimization. The selected samples were analyzed using scanning electron microscope. The predicted optimum results have been validated by performing the confirmation tests. The confirmation tests showed the considerable reduction in kerf deviation and increase in material removal rate.


Sign in / Sign up

Export Citation Format

Share Document