scholarly journals Investigation of the effect of raster angle, build orientation, and infill density on the elastic response of 3D printed parts using finite element microstructural modeling and homogenization techniques

Author(s):  
Hassan Gonabadi ◽  
Yao Chen ◽  
Arti Yadav ◽  
Steve Bull

AbstractAlthough the literature is abundant with the experimental methods to characterize mechanical behavior of parts made by fused filament fabrication 3D printing, less attention has been paid in using computational models to predict the mechanical properties of these parts. In the present paper, a numerical homogenization technique is developed to predict the effect of printing process parameters on the elastic response of 3D printed parts with cellular lattice structures. The development of finite element computational models of printed parts is based on a multi scale approach. Initially, at the micro scale level, the analysis of micro-mechanical models of a representative volume element is used to calculate the effective orthotropic properties. The finite element models include different infill densities and building/raster orientation maintaining the bonded region between the adjacent fibers and layers. The elastic constants obtained by this method are then used as an input for the creation of macro scale finite element models enabling the simulation of the mechanical response of printed samples subjected to the bending, shear, and tensile loads. Finally, the results obtained by the homogenization technique are validated against more realistic finite element explicit microstructural models and experimental measurements. The results show that, providing an accurate characterization of the properties to be fed into the macro scale model, the use of the homogenization technique is a reliable tool to predict the elastic response of 3D printed parts. The outlined approach provides faster iterative design of 3D printed parts, contributing to reducing the number of experimental replicates and fabrication costs.

2018 ◽  
Vol 24 (1) ◽  
pp. 177-187 ◽  
Author(s):  
Dalia Calneryte ◽  
Rimantas Barauskas ◽  
Daiva Milasiene ◽  
Rytis Maskeliunas ◽  
Audrius Neciunas ◽  
...  

Purpose The purpose of this paper is to investigate the influence of geometrical microstructure of items obtained by applying a three-dimensional (3D) printing technology on their mechanical strength. Design/methodology/approach Three-dimensional printed items (3DPI) are composite structures of complex internal constitution. The buildup of the finite element (FE) computational models of 3DPI is based on a multi-scale approach. At the micro-scale, the FE models of representative volume elements corresponding to different additive layer heights and different thicknesses of extruded fibers are investigated to obtain the equivalent non-linear nominal stress–strain curves. The obtained results are used for the creation of macro-scale FE models, which enable to simulate the overall structural response of 3D printed samples subjected to tensile and bending loads. Findings The validation of the models was performed by comparing the computed results against the experimental ones, where satisfactory agreement has been demonstrated within a marked range of thicknesses of additive layers. Certain inadequacies between computed against experimental results were observed in cases of thinnest and thickest additive layers. The principle explanation of the reasons of inadequacies takes into account the poorer quality of mutual adhesion in case of very thin extruded fibers and too-early solidification effect. Originality/value Flexural and tensile experiments are simulated by FE models that are created with consideration to microstructure of 3D printed samples.


Author(s):  
F E Donaldson ◽  
P Pankaj ◽  
A H Law ◽  
A H Simpson

The study of the mechanical behaviour of trabecular bone has extensively employed micro-level finite element (μFE) models generated from images of real bone samples. It is now recognized that the key determinants of the mechanical behaviour of bone are related to its micro-architecture. The key indices of micro-architecture, in turn, depend on factors such as age, anatomical site, sex, and degree of osteoporosis. In practice, it is difficult to acquire sufficient samples that encompass these variations. In this preliminary study, a method of generating virtual finite element (FE) samples of trabecular bone is considered. Virtual samples, calibrated to satisfy some of the key micro-architectural characteristics, are generated computationally. The apparent level elastic and post-elastic mechanical behaviour of the generated samples is examined: the elastic mechanical response of these samples is found to compare well with natural trabecular bone studies conducted by previous investigators; the post-elastic response of virtual samples shows that material non-linearities have a much greater effect in comparison with geometrical non-linearity for the bone densities considered. Similar behaviour has been reported by previous studies conducted on real trabecular bone. It is concluded that virtual modelling presents a potentially valuable tool in the study of the mechanical behaviour of trabecular bone and the role of its micro-architecture.


2010 ◽  
Vol 24-25 ◽  
pp. 25-41 ◽  
Author(s):  
Keith Worden ◽  
W.E. Becker ◽  
Manuela Battipede ◽  
Cecilia Surace

This paper concerns the analysis of how uncertainty propagates through large computational models like finite element models. If a model is expensive to run, a Monte Carlo approach based on sampling over the possible model inputs will not be feasible, because the large number of model runs will be prohibitively expensive. Fortunately, an alternative to Monte Carlo is available in the form of the established Bayesian algorithm discussed here; this algorithm can provide information about uncertainty with many less model runs than Monte Carlo requires. The algorithm also provides information regarding sensitivity to the inputs i.e. the extent to which input uncertainties are responsible for output uncertainty. After describing the basic principles of the Bayesian approach, it is illustrated via two case studies: the first concerns a finite element model of a human heart valve and the second, an airship model incorporating fluid structure interaction.


2016 ◽  
Vol 49 (13) ◽  
pp. 2778-2784 ◽  
Author(s):  
Giorgia M. Bosi ◽  
Benedetta Biffi ◽  
Giovanni Biglino ◽  
Valentina Lintas ◽  
Rod Jones ◽  
...  

2010 ◽  
Vol 20 (4) ◽  
pp. 563-571 ◽  
Author(s):  
Fabio Galbusera ◽  
Hendrik Schmidt ◽  
Cornelia Neidlinger-Wilke ◽  
Andreas Gottschalk ◽  
Hans-Joachim Wilke

Author(s):  
Mohammed Kashama Guzunza ◽  
Ozgur Ozcelik ◽  
Umut Yucel ◽  
Ozgur Girgin

Nowadays it becomes trend in studying of dynamic behavior on complex structure. Model updating is one of the tools developed for verifying accuracy of finite element models. In this paper, method for computing model updating on finite element model and effective the experimental modal analysis of structural systems is developed. The identification method developed in this study is based on time-domain system identification numerical techniques. The case study considered in this work is a 3D printed structure that be modeled as a two-story shear building system with irregular torsion. A preliminary numerical model of the two-story shear building system is developed by using SAP2000 and the experimental modal parameters data are collected in the laboratory buy some test then are modeled by Artemis modal pro. After obtaining the results from numerical modal and experimental modal, it was brought to FEMtools software to improve the match between the dynamic properties of an initial structure and the experimentally estimated modal data for updating. After updating, it’s shown that optimization was done, that some unknown material parameters (such as mass density and young modulus) of materials and/or boundary conditions were optimized by FEMtools Optimization that provides the possibility to perform design optimization on updated finite element models.


Sign in / Sign up

Export Citation Format

Share Document