A calibration tool for weld penetration depth estimation based on dimensional and thermal sensor fusion

Author(s):  
Aitor Zalakain-Azpiroz ◽  
Nieves Rodríguez ◽  
Aitor García de la Yedra ◽  
Joaquín Piccini ◽  
Xabier Angulo-Vinuesa
1997 ◽  
Vol 119 (4) ◽  
pp. 791-801 ◽  
Author(s):  
Jay F. Tu ◽  
Kishore N. Lankalapalli ◽  
Mark Gartner ◽  
Keng H. Leong

High-power CO2 laser welding has been widely used in the industry because of its high productivity and excellent weld quality. In order to tap the potential of this process completely, it is important to have on-line weld quality inspection methods to improve the process productivity and reliability by achieving 100 percent weld inspection. Weld penetration is one of the most important factors critical to the quality of a laser weld. However, it is very difficult to directly measure the extent of penetration without sectioning the workpiece. In this paper a model-based penetration depth estimation technique suitable for the production environment is developed. The proposed model relates the temperature measured on the bottom surface of the workpiece, weld bead width, laser beam power and welding speed to penetration depth. The closed-loop depth estimator combines the model and a model-error compensator to compensate for the uncertainty in the measurement of the laser power and absorptivity. Other effects considered are the averaging due to the finite size of the sensor, delay based on the sensor location and the process and sensor dynamics. Several bead-on-plate and butt welds were made on low carbon steel plates to validate the static process models and the depth estimation scheme. Temperatures on the bottom surface of the workpiece during welding were measured using infrared thermocouples. The welds were sectioned longitudinally to obtain the penetration profile. The penetration profiles estimated by the depth estimator matched satisfactorily with the measured penetration profiles. The results validate the capability of the proposed depth estimator to estimate penetration depth and its ability to trace the dynamic changes in penetration depth.


2002 ◽  
Vol 14 (2) ◽  
pp. 114-121 ◽  
Author(s):  
Allen Sun ◽  
Elijah Kannatey-Asibu ◽  
Mark Gartner

2021 ◽  
Vol 111 (11-12) ◽  
pp. 863-868
Author(s):  
Thorsten Mattulat ◽  
Ronald Pordzik ◽  
Peer Woizeschke

Die optische Kohärenztomographie (OCT) erlaubt die zerstörungsfreie In-situ-Überwachung der Einschweißtiefe beim Laserstrahlschweißen. Für dieses Verfahren wird hier der Einfluss von verringerten Umgebungsdrücken auf die Messqualität untersucht. Es wird gezeigt, dass sich bei niedrigerem Umgebungsdruck deutlich größere Signalanteile aus dem Bereich des Bodens der Dampfkapillare zurückerhalten lassen. Auf diese Weise steigen die effektive Messfrequenz und die Erkennbarkeit von Änderungen der Einschweißtiefe.   Optical coherence tomography (OCT) enables non-destructive in-situ monitoring of the weld penetration depth during laser beam welding. For this technology, the influence of reduced ambient pressures on the measurement quality is investigated. It is shown that significantly larger signal components are obtained from the bottom of the vapor capillary at lower ambient pressure increasing the applicable measurement frequency and the detectability of changes in the weld penetration depth.


2019 ◽  
Vol 147 ◽  
pp. 232-241 ◽  
Author(s):  
Michael Schlund ◽  
Daniel Baron ◽  
Paul Magdon ◽  
Stefan Erasmi

Sign in / Sign up

Export Citation Format

Share Document