Improving BeiDou real-time precise point positioning with numerical weather models

2017 ◽  
Vol 91 (9) ◽  
pp. 1019-1029 ◽  
Author(s):  
Cuixian Lu ◽  
Xingxing Li ◽  
Florian Zus ◽  
Robert Heinkelmann ◽  
Galina Dick ◽  
...  
2016 ◽  
Vol 7 (6) ◽  
pp. 1856-1873 ◽  
Author(s):  
Raquel M. Capilla ◽  
José Luis Berné ◽  
Angel Martín ◽  
Raul Rodrigo

2014 ◽  
Vol 67 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Aigong Xu ◽  
Zongqiu Xu ◽  
Xinchao Xu ◽  
Huizhong Zhu ◽  
Xin Sui ◽  
...  

On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tamer Baybura ◽  
İbrahim Tiryakioğlu ◽  
Mehmet Ali Uğur ◽  
Halil İbrahim Solak ◽  
Şeyma Şafak

Real-time kinematic (RTK) technique is important for mapping applications requiring short measure time, the distance between rover and base station, and high accuracy. There are several RTK methods used today such as the traditional RTK, long base RTK (LBRTK), network RTK (NRTK), and precise point positioning RTK (PPP-RTK). NRTK and LBRTK are popular with the advantage of the distance, the time, and accuracy. In the present study, the NRTK and LBRTK measurements were compared in terms of accuracy and distance in a test network with 6 sites that was established between 5 and 60 km. Repetitive NRTK and LBRTK measurements were performed on 6 different days in 2015-2017-2018 and additionally 4 campaigns of repetitive static measurements were carried out in this test network. The results of NRTK and LBRTK methods were examined and compared with all relevant aspects by considering the results of the static measurements as real coordinates. The study results showed that the LBRTK and NRTK methods yielded similar results at base lengths up to 40 km with the differences less than 3 cm horizontally and 4 cm vertically.


GPS Solutions ◽  
2018 ◽  
Vol 23 (1) ◽  
Author(s):  
Yulong Ge ◽  
Feng Zhou ◽  
Tianjun Liu ◽  
WeiJin Qin ◽  
Shengli Wang ◽  
...  

2016 ◽  
Author(s):  
J. Douša ◽  
G. Dick ◽  
M. Kačmařík ◽  
R. Brožková ◽  
F. Zus ◽  
...  

Abstract. Initial objectives and design of the Benchmark campaign organized within the European COST Action ES1206 (2013-2017) are described in the paper. This campaign has aimed at supporting the development and validation of advanced GNSS tropospheric products, in particular high-resolution and ultra-fast zenith total delays (ZTD) and tropospheric gradients derived from a dense permanent network. A complex dataset was collected for the 8-week period when several extreme heavy precipitation episodes occurred in central Europe which caused severe river floods in this area. An initial processing of data sets from Global Navigation Satellite System (GNSS) and numerical weather models (NWM) provided independently estimated reference parameters – zenith tropospheric delays and tropospheric horizontal gradients. Their provision gave an overview about the product similarities and complementarities and thus a potential for improving a synergy in their optimal exploitations in future. Reference GNSS and NWM results were inter-compared and visually analysed using animated maps. ZTDs from two reference GNSS solutions compared to global ERA-Interim re-analysis resulted in the accuracy at the 10-millimeter level in terms of RMS (with a negligible overall bias), comparisons to global GFS forecast showed accuracy at the 12-millimeter level with the overall bias of -5 mm and, finally, comparisons to mesoscale ALADIN-CZ forecast resulted in the accuracy at the 8-milllimetre level with a negligible total bias. The comparison of horizontal tropospheric gradients from GNSS and NWM data demonstrated a very good agreement among independent solutions with negligible biases and the accuracy of about 0.5 mm. Visual comparisons of maps of zenith wet delays and tropospheric horizontal gradients showed very promising results for future exploitations of advanced GNSS tropospheric products in meteorological applications such as severe weather event monitoring and weather nowcasting. The GNSS products revealed a capability of providing more detailed structures in atmosphere than the state-of-the-art numerical weather models are able to capture. Initial study on contribution of hydrometeors (e.g. cloud water, ice or snow) to GNSS signal delays during severe weather reached up to 17 mm in zenith path delay and suggested to carefully account them within the functional model. The reference products will be further exploited in various specific studies using the Benchmark dataset. It is thus going to play a key role in these highly inter-disciplinary developments towards better mutual benefits from advanced GNSS and meteorological products.


2013 ◽  
Vol 36 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Junping Chen ◽  
Haojun Li ◽  
Bin Wu ◽  
Yize Zhang ◽  
Jiexian Wang ◽  
...  

GPS Solutions ◽  
2018 ◽  
Vol 22 (3) ◽  
Author(s):  
Lin Pan ◽  
Xiaohong Zhang ◽  
Xingxing Li ◽  
Jingnan Liu ◽  
Fei Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document