scholarly journals Detonation interaction with a diffuse interface and subsequent chemical reaction

Shock Waves ◽  
2007 ◽  
Vol 16 (6) ◽  
pp. 421-429 ◽  
Author(s):  
D. H. Lieberman ◽  
J. E. Shepherd
2015 ◽  
Vol 291 (4) ◽  
pp. 1735-1750 ◽  
Author(s):  
Tomoko Abe ◽  
Yoshiteru Hashimoto ◽  
Ye Zhuang ◽  
Yin Ge ◽  
Takuto Kumano ◽  
...  

We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its “enzymatic activity” and (ii) subsequent “chemical” S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.


2018 ◽  
Vol 3 (11) ◽  
Author(s):  
Arthur Kuhlmann ◽  
Sergej Hermann ◽  
Michael Weinberger ◽  
Alexander Penner ◽  
Hans-Achim Wagenknecht

Abstract In chemical photocatalysis, the photophysical process is coupled to a subsequent chemical reaction. The absorbed light energy contributes to the overall energy balance of the reaction and thereby increases its sustainability. Additionally, oligonucleotides and oligopeptides offer the possibility to control regio- and stereoselectivity as catalysts of organic reactions by providing potential substrate binding sites. We follow this path and want to explore how important substrate binding sites are for photocatalysis. The general concepts of photochemistry and biooligomer catalysis are combined for photochemically active DNAzymes for [2 + 2]-cycloadditions and proline-rich short peptides for nucleophilic additions to styrenes.


Author(s):  
Dai Dalin ◽  
Guo Jianmin

Lipid cytochemistry has not yet advanced far at the EM level. A major problem has been the loss of lipid during dehydration and embedding. Although the adoption of glutaraldehyde and osmium tetroxide accelerate the chemical reaction of lipid and osmium tetroxide can react on the double bouds of unsaturated lipid to from the osmium black, osmium tetroxide can be reduced in saturated lipid and subsequently some of unsaturated lipid are lost during dehydration. In order to reduce the loss of lipid by traditional method, some researchers adopted a few new methods, such as the change of embedding procedure and the adoption of new embedding media, to solve the problem. In a sense, these new methods are effective. They, however, usually require a long period of preparation. In this paper, we do research on the fiora nectary strucure of lauraceae by the rapid-embedding method wwith PEG under electron microscope and attempt to find a better method to solve the problem mentioned above.


2015 ◽  
Vol E98.C (2) ◽  
pp. 123-126
Author(s):  
Takeshi FUKUDA ◽  
Tomokazu KURABAYASHI ◽  
Hikari UDAKA ◽  
Nayuta FUNAKI ◽  
Miho SUZUKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document