Mitigation of voltage rise due to high solar PV penetration in Saudi distribution network

2020 ◽  
Vol 102 (2) ◽  
pp. 881-890 ◽  
Author(s):  
Thamer Alquthami ◽  
R. Sreerama Kumar ◽  
Abdullah Al Shaikh
Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Busra Uzum ◽  
Ahmet Onen ◽  
Hany M. Hasanien ◽  
S. M. Muyeen

In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.


2021 ◽  
Vol 83 (6) ◽  
pp. 203-209
Author(s):  
Nur Muhammad Alif Ramli ◽  
Siti Maherah Hussin ◽  
Dalila Mat Said ◽  
Norzanah Rosmin ◽  
Amirjan Nawabjan

In recent years, the increasing integration of PV generations into distribution network systems is becoming a huge concern as it introduces various complications such as voltage rise problems, especially during high PV penetration levels. Conventional mitigation methods using voltage regulating devices are not designed to mitigate this particular problem while emerging methods requires sacrifices in term of cost and profit to be made by PV system owners. Thus, mitigation using a battery energy storage system (BESS) is proposed in this paper, where it is specifically designed to solve the voltage rise problem in the distribution system during high PV penetration. This is achieved by controlling the charging and discharging of the BESS accordingly. To validate the effectiveness of the proposed BESS, a simulation using MATLAB/Simulink software of 25 distributed PV generations with respective loads connected to a distribution network power system is done. The penetration level is set from 0% to 100% and the voltage level is measured at the point of common coupling for each increment. The findings show that the BESS can regulate the voltage rise that occurred during high PV penetration of 80% and 100% from 1.11 p.u. and 1.13 p.u. to an acceptable voltage of 1.01 pu.


Author(s):  
Patrobers Simiyu ◽  
Ai Xin ◽  
Vedaste Ndiyishimiye ◽  
Adam Mohamed Ahmed Abdo ◽  
George Adwek ◽  
...  

Author(s):  
Dilini Almeida ◽  
Jagadeesh Pasupuleti ◽  
Shangari K. Raveendran ◽  
M. Reyasudin Basir Khan

The rapid penetration of solar photovoltaic (PV) systems in distribution networks has imposed various implications on network operations. Therefore, it is imperative to consider the stochastic nature of PV generation and load demand to address the operational challenges in future PV-rich distribution networks. This paper proposes a Monte Carlo based probabilistic framework for assessing the impact of PV penetration on medium voltage (MV) distribution networks. The uncertainties associated with PV installation capacity and its location, as well as the time-varying nature of PV generation and load demand were considered for the implementation of the probabilistic framework. A case study was performed for a typical MV distribution network in Malaysia, demonstrating the effectiveness of Monte Carlo analysis in evaluating the potential PV impacts in the future. A total of 1000 Monte Carlo simulations were conducted to accurately identify the influence of PV penetration on voltage profiles and network losses. Besides, several key metrics were used to quantify the technical performance of the distribution network. The results revealed that the worst repercussion of high solar PV penetration on typical Malaysian MV distribution networks is the violation of the upper voltage statutory limit, which is likely to occur beyond 70% penetration level.


Author(s):  
Dilini Almeida ◽  
Jagadeesh Pasupuleti ◽  
Janaka Ekanayake

<span>Solar photovoltaic (PV) power generation has shown a worldwide remarkable growth in recent years. In order to achieve the increasing energy demand, a large number of residential PV units are connected to the low voltage (LV) distribution networks. However, high integration of solar PV could cause negative impacts on distribution grids leading to violations of limits and standards. The voltage rise has been recognized as one of the major implications of increased PV integration, which could significantly restrict the capacity of the distribution network to support higher PV penetration levels. This study addresses the performance of the off-load tap changing transformer under high solar PV penetration and a detailed analysis has been carried out to examine the maximum allowable PV penetration at discrete tap positions of the transformer. The maximum PV penetration has been determined by ensuring that all nodal voltages adhere to grid voltage statutory limits. The simulation results demonstrate that the first two tap positions could be adopted to control the grid voltage under higher PV penetrations thus facilitating further PV influx into the existing network.</span>


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2516
Author(s):  
Klemen Deželak ◽  
Peter Bracinik ◽  
Klemen Sredenšek ◽  
Sebastijan Seme

This paper deals with photovoltaic (PV) power plant modeling and its integration into the medium-voltage distribution network. Apart from solar cells, a simulation model includes a boost converter, voltage-oriented controller and LCL filter. The main emphasis is given to the comparison of two optimization methods—particle swarm optimization (PSO) and the Ziegler–Nichols (ZN) tuning method, approaches that are used for the parameters of Proportional-Integral (PI) controllers determination. A PI controller is commonly used because of its performance, but it is limited in its effectiveness if there is a change in the parameters of the system. In our case, the aforementioned change is caused by switching the feeders of the distribution network from an open-loop to a closed-loop arrangement. The simulation results have claimed the superiority of the PSO algorithm, while the classical ZN tuning method is acceptable in a limited area of operation.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Arvind Sharma ◽  
Mohan Kolhe ◽  
Alkistis Kontou ◽  
Dimitrios Lagos ◽  
Panos Kotsampopoulos

Abstract In this paper, solar photovoltaic hosting capacity within the electrical distribution network is estimated for different buses, and the impacts of high PV penetration are evaluated using power hardware-in-loop testing methods. It is observed that the considered operational constraints (i.e. voltage and loadings) and their operational limits have a significant impact on the hosting capacity results. However, with increasing photovoltaic penetration, some of the network buses reach maximum hosting capacity, which affects the network operation (e.g. bus voltages, line loading). The results show that even distributing the maximum hosting capacity among different buses can increase the bus voltage rise to 9%. To maintain the network bus voltages within acceptable limits, reactive power voltage-based droop control is implemented in the photovoltaic conditioning devices to test the dynamics of the network operation. The results show that implementation of the droop control technique can reduce the maximum voltage rise from 9% to 4% in the considered case. This paper also presents the impact of forming a mesh type network (i.e. from radial network) on the voltage profile during PV penetration, and a comparative analysis of the operational performance of a mesh type and radial type electrical network is performed. It is observed that the cumulative effect of forming a mesh type network along with a droop control strategy can further improve the voltage profile and contribute to increase photovoltaic penetration. The results are verified using an experimental setup of digital real-time simulator and power hardware-in-loop test methods. The results from this work will be useful for estimating the appropriate photovoltaic hosting capacity within a distribution network and implementation of a droop control strategy in power conditioning devices to maintain the network operational parameters within the specified limits. Highlights Voltage and line loading constraints’ combination can reduce PV hosting capacity by 50% as compared to only voltage as a constraint. Implementation of reactive power versus voltage droop control in PV power conditioning device can reduce voltage variation from 9% to 4%. In a PV integrated electrical energy network, line loading can be reduced by 20% if the network is configured from radial to mesh type.


2015 ◽  
Vol 3 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Guangya YANG ◽  
Francesco MARRA ◽  
Miguel JUAMPEREZ ◽  
Søren Bækhøj KJÆR ◽  
Seyedmostafa HASHEMI ◽  
...  
Keyword(s):  
Solar Pv ◽  

Sign in / Sign up

Export Citation Format

Share Document