Fast prediction of unbalanced magnetic pull in PM machines

Author(s):  
Seyed Payam Emami ◽  
Samad Taghipour Boroujeni ◽  
Noureddine Takorabet
2019 ◽  
Vol 15 (3) ◽  
pp. 216-230 ◽  
Author(s):  
Abbasali Emamjomeh ◽  
Javad Zahiri ◽  
Mehrdad Asadian ◽  
Mehrdad Behmanesh ◽  
Barat A. Fakheri ◽  
...  

Background:Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs.Objective:The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA’s roles in cellular processes and drugs design, briefly.Method:In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases.Results:The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs.Conclusion:ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.


Author(s):  
André Hürkamp ◽  
Sebastian Gellrich ◽  
Antal Dér ◽  
Christoph Herrmann ◽  
Klaus Dröder ◽  
...  

AbstractIn this contribution, a concept is presented that combines different simulation paradigms during the engineering phase. These methods are transferred into the operation phase by the use of data-based surrogates. As an virtual production scenario, the process combination of thermoforming continuous fiber-reinforced thermoplastic sheets and injection overmolding of thermoplastic polymers is investigated. Since this process is very sensitive regarding the temperature, the volatile transfer time is considered in a dynamic process chain control. Based on numerical analyses of the injection molding process, a surrogate model is developed. It enables a fast prediction of the product quality based on the temperature history. The physical model is transferred to an agent-based process chain simulation identifying lead time, bottle necks and quality rates taking into account the whole process chain. In the second step of surrogate modeling, a feasible soft sensor model is derived for quality control over the process chain during the operation stage. For this specific uses case, the production rejection can be reduced by 12% compared to conventional static approaches.


2021 ◽  
Vol 18 (1) ◽  
pp. 1-25
Author(s):  
Lorenz Braun ◽  
Sotirios Nikas ◽  
Chen Song ◽  
Vincent Heuveline ◽  
Holger Fröning

2021 ◽  
Vol 23 (7) ◽  
pp. 4454-4454
Author(s):  
Kunran Yang ◽  
Jeremie Zaffran ◽  
Bo Yang

Correction for ‘Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor’ by Kunran Yang et al., Phys. Chem. Chem. Phys., 2020, 22, 890–895, DOI: 10.1039/C9CP04885E.


2021 ◽  
pp. 107754632110233
Author(s):  
Wei Feng ◽  
Kun Zhang ◽  
Baoguo Liu ◽  
Weifang Sun ◽  
Sijie Cai

The air-gap eccentricity will produce unbalanced magnetic pull and cause vibrations and noises in a motor. In this study, the dynamic behavior of a synchronous motorized spindle with inclined eccentricity is investigated. A semi-analytical method is proposed to model the unbalanced magnetic pull and the electromagnetic torque of a rotor with inclined eccentricity, and the semi-analytical method is verified by the finite element method. The dynamic model of a spindle-bearing system is built by taking the centrifugal force and gyroscopic effects into account. Then, the vibration response of dynamic displacement eccentricity, inclined eccentricity including displacement eccentricity and angle eccentricity, rotating speed, and unbalanced mass eccentricity in both time domain and frequency domain are simulated and analyzed. The results show that the eccentricities can lead to fluctuations in amplitudes of the dynamic displacement response and the angle response. The frequency components of the dynamic responses are the combination of rotating frequency, VC frequency, and power frequency. It is indicated that the coupling interactions of bearing forces, unbalanced mass force, and unbalanced magnetic pull have an obvious effect on the spindle-bearing system.


Sign in / Sign up

Export Citation Format

Share Document