Chitosan nanoparticles as a rice growth promoter: evaluation of biological activity

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
K. Divya ◽  
Meenu Thampi ◽  
Smitha Vijayan ◽  
S. Shabanamol ◽  
M. S. Jisha
2006 ◽  
Vol 6 (9) ◽  
pp. 2936-2944 ◽  
Author(s):  
Ai-Ping Zheng ◽  
Jian-Cheng Wang ◽  
Wan-Liang Lu ◽  
Xuan Zhang ◽  
Hua Zhang ◽  
...  

Thymopentin, a potent immunomodulating drug, was incorporated into pH-sensitive chitosan nanoparticles prepared by ionic gelation of chitosan with tripolyphosphate anions and then coated with Eudragit S100 to improve the stability and the oral bioavailability. Nanoparticles particle size and zeta potential were measured by photo correction spectroscopy and laser Dopper anemometry. Its morphology was examined by environment scan electron microscope. The encapsulation efficiency and the release in vitro were determined by HPLC. Enzymatic stabilization was expressed by the enzymatic degradation of aminopeptidase. Biological activity of TP5 loaded in nanoparticles was assayed by lymphocyte proliferation test in vitro and the immune function (CD4+/CD8+) of irradiated rat in vivo. The results obtained demonstrated that the average sizes of pH-sensitive chitosan nanoparticles were 175.6 ± 17 nm, the zeta potential was 28.44 ± 0.5 mV and the encapsulation efficiency was 76.70 ± 2.6%. The cumulative release percentages of thymopentin from the pH-sensitive nanoparticles were 24.65%, 41.01%, and 81.44% incubated in different medium, 0.1 N HCl, pH 5.0 PBS, and pH 7.4 PBS, respectively. The pH-sensitive chitosan nanoparticles could efficiently protect TP5 from enzymatic degradation and prolong the degradation half-time of TP5 from 1.5 min to 15 min. It was demonstrated from the lymphocyte proliferation test that the nanoparticle-encapsulated TP5 still kept its biological activity. In immunosuppression rats, the lowered T-lymphocyte subsets values were significantly increased and the raised CD4+/CD8+ ratio was evidently reduced. These results indicated that pH-sensitive chitosan nanoparticles may be used as the vector in oral drug delivery system for TP5.


2017 ◽  
Vol 157 ◽  
pp. 1862-1873 ◽  
Author(s):  
A.E.S. Pereira ◽  
I.E. Sandoval-Herrera ◽  
S.A. Zavala-Betancourt ◽  
H.C. Oliveira ◽  
A.S. Ledezma-Pérez ◽  
...  

Author(s):  
Sri Atun ◽  
Retno Arianingrum ◽  
Stela Dimitrova

The main objectives of this research are to synthesize chitosan nanoparticles of chloroform fraction of K. rotunda, to characterize the products, and to conduct a biological test on these products as an antioxidant. Chloroform fraction of K. rotunda was loaded on chitosan nanoparticles and then was prepared by ionic gelation of chitosan with sodium tripolyphosphat (Na-TPP) in various compositions. Characterization of the products were investigated for particle size, zeta potential, and morphology by Scanning Electron Microscophy (SEM). The biological activity of the products as an antioxidant was tested by the DPPH method. Results of this study showed that the nanoparticle can be synthesized at the concentration ratio of 10: 1 for chitosan/Na-TPP. The size were in the range of 172 to 877 nm, with a zeta potential of + 28.06 to + 38.03 mV. The nanoparticle was cylinders in shape and smooth in surfaces. The antioxidant activity of chitosan nanoparticles of chloroform fraction of K. rotunda showed less activity compared with the previous fraction.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Qian Yao ◽  
Wei Liu ◽  
Xiao-Jun Gou ◽  
Xiao-Qiang Guo ◽  
Jun Yan ◽  
...  

Chitosan nanoparticles (CS-NPs) without drug loading have diverse biological activity. In this study, we prepared CS-NPs, CS-NPs solidified by different amount of glutaraldehyde, and CS-NPs modified with either biotin (B-CS-NPs) or biotin and avidin (A-B-CS-NPs) and examined their cytotoxicity on HepG2 cells. The morphology and size were measured by transmission electron microscopy and photon correction spectroscopy, respectively. The extent of solidification was validated by the approach of sonication. Biotin connect density on the surface of B-CS-NPs and A-B-CS-NPs was determined by biotin assay kit. The results showed that most of the NPs were round and their mean sizes were all below 300 nm. Biotin connect density of B-CS-NPs and A-B-CS-NPs was 2.18 ± 0.36 and 1.26 ± 0.11 mol biotin/mol CS, respectively. At relatively low concentration, CS-NPs with higher extent of solidification exhibited more vigorous inhibitory effect against HepG2 cells than those without solidification. When NPs were incubated with cancer cells for 48 h, compared with CS-NPs, the anticancer activity of B-CS-NPs and A-B-CS-NPs was enhanced significantly(P<0.05). In addition, A-B-CS-NPs showed superior cytotoxicity over B-CS-NPs. This study demonstrates that modification with biotin and avidin may be an efficient way in improving antitumor activity of CS-NPs against hepatic carcinoma.


Author(s):  
Sri Atun

Objective: The main objectives of this research are to characterize of nanoparticles produced by chloroform fraction of K. rotunda loaded with alginic acid and combination alginic acid-chitosan, and its biological activity test. Methods: Chloroform fraction of K. rotunda was loaded on alginic acid and combination of alginic acid-chitosan nanoparticles by ionic gelation method in various compositions. Characterizations of the products were investigated in particle size, zeta potential, and morphology by Scanning Electron Microscopy (SEM). The biological activity of the products as an antioxidant was tested by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The cytotoxic effect was analysed using MTT [3-(4,5 dimethyltiazol-2-yl)-2,5-diphenyltetrazoilium bromide] assay.Result:The nanoparticles alginic acid can be synthesized at the optimal mass ratio range of alginic acid : CaCl2 of 10 :1 (% w/v),the percentage nanoparticle products was100%,  the size range of the nanoparticles were 87 to 584 nm, with a zeta potential of -39.0 mV,  and the morphology shows a spherical shape and smooth surface. Furthermore, nanoparticles result from the combination of alginic acid-chitosan at the optimal mass ratio range of alginic acid : chitosan of 10 :1 (% w/v) and added calsium ion at 0.015% w/v, the percentage nanoparticle products was100%, the size range of the nanoparticle were 87 to 877 nm, with a zeta potential of -27.1 mV, and  the morphology shows a form of rectangular beam.Conclusion: The nanoparticle products of chloroform fraction of K. rotunda loaded alginic acid and combination alginic acid-chitosan were successfully obtained  by ionic gelation method. The nanoparticle products show lower activity in antioxidant and cytotoxic effect against human breast cancer T47D cell lines than the starting material chloroform fraction of K. rotunda.Keywords: Alginic acid, Chitosan, Nanoparticles, Kaempferia rotunda, Antioxidant, Cytotoxic effect, Human breast cancer T47D cell lines.


Author(s):  
María Elena Sotelo-Boyás ◽  
Silvia Bautista-Baños ◽  
Zormy N. Correa-Pacheco ◽  
Antonio Jiménez-Aparicio ◽  
Dharini Sivakumar

Author(s):  
G. Kasnic ◽  
S. E. Stewart ◽  
C. Urbanski

We have reported the maturation of an intracisternal A-type particle in murine plasma cell tumor cultures and three human tumor cell cultures (rhabdomyosarcoma, lung adenocarcinoma, and osteogenic sarcoma) after IUDR-DMSO activation. In all of these studies the A-type particle seems to develop into a form with an electron dense nucleoid, presumably mature, which is also intracisternal. A similar intracisternal A-type particle has been described in leukemic guinea pigs. Although no biological activity has yet been demonstrated for these particles, on morphologic grounds, and by the manner in which they develop within the cell, they may represent members of the same family of viruses.


Author(s):  
John L. Beggs ◽  
John D. Waggener ◽  
Wanda Miller

Microtubules (MT) are versatile organelles participating in a wide variety of biological activity. MT involvement in the movement and transport of cytoplasmic components has been well documented. In the course of our study on trauma-induced vasogenic edema in the spinal cord we have concluded that endothelial vesicles contribute to the edema process. Using horseradish peroxidase as a vascular tracer, labeled endothelial vesicles were present in all situations expected if a vesicular transport mechanism was in operation. Frequently,labeled vesicles coalesced to form channels that appeared to traverse the endothelium. The presence of MT in close proximity to labeled vesicles sugg ested that MT may play a role in vesicular activity.


Sign in / Sign up

Export Citation Format

Share Document