Thymopentin-Loaded pH-Sensitive Chitosan Nanoparticles for Oral Administration: Preparation, Characterization, and Pharmacodynamics

2006 ◽  
Vol 6 (9) ◽  
pp. 2936-2944 ◽  
Author(s):  
Ai-Ping Zheng ◽  
Jian-Cheng Wang ◽  
Wan-Liang Lu ◽  
Xuan Zhang ◽  
Hua Zhang ◽  
...  

Thymopentin, a potent immunomodulating drug, was incorporated into pH-sensitive chitosan nanoparticles prepared by ionic gelation of chitosan with tripolyphosphate anions and then coated with Eudragit S100 to improve the stability and the oral bioavailability. Nanoparticles particle size and zeta potential were measured by photo correction spectroscopy and laser Dopper anemometry. Its morphology was examined by environment scan electron microscope. The encapsulation efficiency and the release in vitro were determined by HPLC. Enzymatic stabilization was expressed by the enzymatic degradation of aminopeptidase. Biological activity of TP5 loaded in nanoparticles was assayed by lymphocyte proliferation test in vitro and the immune function (CD4+/CD8+) of irradiated rat in vivo. The results obtained demonstrated that the average sizes of pH-sensitive chitosan nanoparticles were 175.6 ± 17 nm, the zeta potential was 28.44 ± 0.5 mV and the encapsulation efficiency was 76.70 ± 2.6%. The cumulative release percentages of thymopentin from the pH-sensitive nanoparticles were 24.65%, 41.01%, and 81.44% incubated in different medium, 0.1 N HCl, pH 5.0 PBS, and pH 7.4 PBS, respectively. The pH-sensitive chitosan nanoparticles could efficiently protect TP5 from enzymatic degradation and prolong the degradation half-time of TP5 from 1.5 min to 15 min. It was demonstrated from the lymphocyte proliferation test that the nanoparticle-encapsulated TP5 still kept its biological activity. In immunosuppression rats, the lowered T-lymphocyte subsets values were significantly increased and the raised CD4+/CD8+ ratio was evidently reduced. These results indicated that pH-sensitive chitosan nanoparticles may be used as the vector in oral drug delivery system for TP5.


Author(s):  
Muhammad Wahab Amjad ◽  
Nawaf Mohamed Alotaibi

Millions of people are affected globally by alzheimer’s disease and it is regarded as a dangerous progressive medical and socio-economic burden. The drug delivery to brain is hindered due to the presence of blood brain barrier. Nanoparticle mediated drug delivery is a promising approach in this regard. Chitosan is a hydrophilic polysaccharide polymer of N-acetylglycosamine and glucosamine. Owing to its biodegradability, nontoxicity and biocompatibility it is regarded as a safe excipient. The aim of the study was to fabricate donepezil-loaded sustained release chitosan nanoparticles as a simple way to deliver nano-drugs to the brain. The nanoparticles were fabricated using ionic gelation method using different concentrations of Sodium tripolyphosphate (TPP) and chitosan. The fabricated nanoparticles were assessed for particle size, zeta potential, encapsulation efficiency and in vitro drug release. The effect of sonication time on the particle size of nanoparticles was also studied. The nanoparticles exhibited mean particle size (between 135-1487 nm) and zeta potential (between +3.9-+38mV) depending on chitosan and TPP concentration used. The rise in the sonication time from 25 to 125 sec exhibited a decrease in particle size. The encapsulation efficiency was found to be in the range of 39.1-74.4%. Sustained and slow release of donepezil at a constant rate was exhibited from nanoparticles. The nanoparticles show potential to deliver donepezil to brain with enhanced encapsulation efficiency.



2020 ◽  
Vol 11 (1) ◽  
pp. 532-545
Author(s):  
Ganesh Narayan Sharma ◽  
Praveen Kumar Ch ◽  
Birendra Shrivastava ◽  
Kumar B ◽  
Arindam Chatterjee

The present research was designed to improve the permeability of sulfasalazine by loading it into chitosan nanoparticles using the ionic gelation method. The process parameters were screened and optimized through Box-Behnken design. 13 formulations containing sulfasalazine chitosan-based nanoparticles (SCSNPs) were optimized using particle size, zeta potential, and % encapsulation efficiency as responses. Results were optimized based on the desirability function shown in 2D contour plots and 3D response surface plots. The effect of every factor on responses was statistically analyzed using ANOVA and p-Value, and the correlation coefficient of all the responses was found to be >0.99 and >0.96 for optimized CSNPs and optimized SCSNPs respectively with p<0.05. From the predicted and observed values of responses, the optimized formulation (SCSNPs) has a particle size of 261±3.06 nm, with an encapsulation efficiency of 81.3±5.3%. Morphology of the particles using scanning electron microscopy reveals nearly spherical shaped particles with a zeta potential of +41.4±0.5 mV. In-vitro studies acknowledge that sulfasalazine was released in a sustained manner for about 24 hrs in simulated colonic fluid pH 7 and phosphate buffer pH 7.4,  when compared to a simulated colonic fluid at fed (pH 6) and fasted state (pH 7.8). Optimized SCSNPs followed Korsmeyer Peppas kinetics with a drug release mechanism as non-fickian diffusion (anomalous transport).



Author(s):  
TAIHASEEN MOMIN ◽  
ARVIND GULBAKE

Objective: Chitosan nanoparticles (ChNP’s) have been widely studied for drug and gene delivery. In this study, we prepared ChNP’s for co-delivery of doxorubicin (DOX) and siRNA for cancer treatment. Methods: The ionic gelation method was used to develop ChNP’s. The positively charged DOX and negatively charged siRNA encapsulated into ChNP’s. The particle size and zeta potential of the developed ChNP’s were studied by particle size analyzer and morphology was examined by TEM. Encapsulation of DOX in ChNP’s was confirmed by FTIR spectroscopy. The encapsulation efficiency and in vitro release of DOX were studied by UV-Vis spectrophotometry. The siRNA loading into ChNP’s was confirmed by gel retardation assay. Results: The developed ChNP’s showed particle size ranged from 127±6.5 to 215±8.5 nm with zeta potential ranged from 16.5±0.3 to 25.8±0.3. Transmission Electron Micrograph showed DOX and siRNA encapsulated ChNP’s are polydisperse and spherical in nature. FTIR study confirmed the binding of DOX with ChNP’s with absorption peaks at 1016 cm-1,1316 cm-1, 1412 cm-1, 1645 cm-1 and 3370 cm-1. The TPP:Ch ratio 0.1:0.5 showed the highest encapsulation efficiency 69±3.24%, with initial burst release and then sustained or slow release of DOX. Agarose gel retardation study confirmed the encapsulation of siRNA in ChNP’s by retarded migration of siRNA-ChNP’s in comparison with naked siRNA. Conclusion: The developed ChNP’s successfully encapsulated the DOX and siRNA and showed the sustain release of DOX. In conclusion, our study shown that ChNP’s is having a potential of co-loading of DOX-siRNA as an efficient drug delivery system for the treatment of various cancers such as colorectal cancer, breast cancer etc.



2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.



2018 ◽  
Vol 8 (5-s) ◽  
pp. 265-270
Author(s):  
Swati Patel ◽  
Prabhat Jain ◽  
Geeta Parkhe

Acyclovir has low bioavailability mainly due to low solubility. This study aimed to formulate an optimized acyclovir (ACV) nanoemulsion gel for the slow, variable and incomplete oral drug absorption in patient suffering from herpes simplex viral infection. The dispersion solubility of acyclovir was studied in various oils, surfactants and co-surfactants and by constructing pseudo phase ternary diagram nanoemulsion area was identified. The optimized formulations of nanoemulsions were subjected to thermodynamic stability tests. After stability study, stable formulation was characterized for droplet size, pH determination, centrifugation, % drug content in nanoemulsion, Zeta Potential and Vesicle size measurement and than nanoemulsion gel were prepared and characterized for spreadability, measurement of viscosity, drug content, In-vitro diffusion, in-vitro release data. Span 40 was selected as surfactant, PEG 400 as co surfactant and castor oil as oil component based on solubility study. The in vitro drug release from acyclovir nanoemulsion gel was found to be considerably higher in comparison to that of the pure drug. The in-vitro diffusion of nanoemulsion gel was significantly good. Based on this study, it can be concluded the solubility and permeability of acyclovir can be increased by formulating into nanoemulsion gel. Keywords: Acyclovir, Nanoemulsion, In-vitro diffusion, Zeta potential, Stability



Biomaterials ◽  
2013 ◽  
Vol 34 (11) ◽  
pp. 2758-2772 ◽  
Author(s):  
Daniele Rubert Nogueira ◽  
Lorena Tavano ◽  
Montserrat Mitjans ◽  
Lourdes Pérez ◽  
M. Rosa Infante ◽  
...  


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 978 ◽  
Author(s):  
Ji-Hun Jang ◽  
Seung-Hyun Jeong ◽  
Yong-Bok Lee

Methotrexate, which is widely used in the treatment of cancer and immune-related diseases, has limitations in use because of its low bioavailability, short half-life, and tissue toxicity. Thus, in this study, a nano-sized water-in-oil-in-water (W/O/W) double emulsion containing methotrexate was prepared to enhance its lymphatic delivery and bioavailability. Based on the results from solubility testing and a pseudo-ternary diagram study, olive oil as the oil, Labrasol as a surfactant, and ethanol as a co-surfactant, were selected as the optimal components for the nanoemulsion. The prepared nanoemulsion was evaluated for size, zeta potential, encapsulation efficiency, pH, morphology, and in vitro release profiles. Furthermore, pharmacokinetics and lymphatic targeting efficiency were assessed after oral and intravenous administration of methotrexate-loaded nanoemulsion to rats. Mean droplet size, zeta potential, encapsulation efficiency, and pH of formulated nanoemulsion were 173.77 ± 5.76 nm, −35.63 ± 0.78 mV, 90.37 ± 0.96%, and 4.07 ± 0.03, respectively. In vitro release profile of the formulation indicated a higher dissolution and faster rate of methotrexate than that of free drug. The prepared nanoemulsion showed significant increases in maximum plasma concentration, area under the plasma concentration-time curve, half-life, oral bioavailability, and lymphatic targeting efficiency in both oral and intravenous administration. Therefore, our research proposes a methotrexate-loaded nanoemulsion as a good candidate for enhancing targeted lymphatic delivery of methotrexate.



1965 ◽  
Vol 43 (9) ◽  
pp. 1489-1498 ◽  
Author(s):  
Edward E. Nishizawa ◽  
R. B. Billiar ◽  
J. Karr ◽  
Kristen B. Eik-Nes

Adrenocorticotrophic hormone (ACTH) labeled with tritium has been prepared with a specific radioactivity of approximately 4000 d.p.m./μg. The tritiated trophin showed biological activity and appeared to be bound to the cells of the adrenal gland. Data indicating that the adrenal cortex can inactivate ACTH were obtained; whether such inactivation is due to binding or enzymatic degradation has not been illustrated. Attempts to demonstrate that the adrenal gland could acetylate the N-terminal serine residue of ACTH failed.



2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ana Guadalupe Luque-Alcaraz ◽  
Mario Onofre Cortez-Rocha ◽  
Carlos Arturo Velázquez-Contreras ◽  
Ana Lilian Acosta-Silva ◽  
Hisila del Carmen Santacruz-Ortega ◽  
...  

Chitosan nanoparticles (CS) and chitosan/pepper tree (Schinus molle) essential oil (CS-EO) bionanocomposites were synthesized by nanoprecipitation method and the in vitro antifungal activity against Aspergillus parasiticus spores was evaluated. The shape and size were evaluated by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The surface charge was determined by assessing the zeta potential and the inclusion of essential oil in bionanocomposites using Fourier transform infrared spectroscopy (FT-IR). The effect on cell viability of the fungus was evaluated using the XTT technique and morphometric analysis by image processing. SEM and DLS analysis indicated that spherical particles with larger diameters for CS-EO biocomposites were observed. Zeta potential values were higher (+11.1 ± 1.60 mV) for CS nanoparticles. Results suggest a chemical interaction between chitosan and pepper tree essential oil. The highest concentration of CS-EO complex caused a larger (40–50%) decrease in A. parasiticus viability. The inclusion of pepper tree oil in CS nanoparticles is a feasible alternative to obtain antifungal biocomposites, where the activity that each compound presents individually is strengthened.



Sign in / Sign up

Export Citation Format

Share Document