Non-selective COX inhibitors impair memory formation and short-term but not long-term synaptic plasticity

Author(s):  
Soomaayeh Heysieattalab ◽  
Jafar Doostmohammadi ◽  
Mahgol Darvishmolla ◽  
Negin Saeedi ◽  
Narges Hosseinmardi ◽  
...  
2015 ◽  
Vol 210 (5) ◽  
pp. 771-783 ◽  
Author(s):  
Norbert Bencsik ◽  
Zsófia Szíber ◽  
Hanna Liliom ◽  
Krisztián Tárnok ◽  
Sándor Borbély ◽  
...  

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yire Jeong ◽  
Hye-Yeon Cho ◽  
Mujun Kim ◽  
Jung-Pyo Oh ◽  
Min Soo Kang ◽  
...  

AbstractMemory is supported by a specific collection of neurons distributed in broad brain areas, an engram. Despite recent advances in identifying an engram, how the engram is created during memory formation remains elusive. To explore the relation between a specific pattern of input activity and memory allocation, here we target a sparse subset of neurons in the auditory cortex and thalamus. The synaptic inputs from these neurons to the lateral amygdala (LA) are not potentiated by fear conditioning. Using an optogenetic priming stimulus, we manipulate these synapses to be potentiated by the learning. In this condition, fear memory is preferentially encoded in the manipulated cell ensembles. This change, however, is abolished with optical long-term depression (LTD) delivered shortly after training. Conversely, delivering optical long-term potentiation (LTP) alone shortly after fear conditioning is sufficient to induce the preferential memory encoding. These results suggest a synaptic plasticity-dependent competition rule underlying memory formation.


1996 ◽  
Vol 76 (3) ◽  
pp. 2111-2114 ◽  
Author(s):  
X. Y. Lin ◽  
D. L. Glanzman

1. Activation of sensory neurons at 2 Hz for 15 min induces long-term depression (LTD) of isolated Aplysia sensorimotor synapses in cell culture. 2. Prior infusion of the Ca2+ chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) into the postsynaptic motor neuron blocks the induction of LTD, but not short-term synaptic depression. 3. Invertebrate central synapses possess the capacity for LTD. This form of long-term synaptic plasticity may play an important role in learning in Aplysia.


2006 ◽  
Vol 103 (13) ◽  
pp. 5125-5130 ◽  
Author(s):  
D. P. Tan ◽  
Q.-Y. Liu ◽  
N. Koshiya ◽  
H. Gu ◽  
D. Alkon

2019 ◽  
Author(s):  
Nicolas Deperrois ◽  
Michael Graupner

AbstractSynaptic efficacy is subjected to activity-dependent changes on short- and long time scales. While short-term changes decay over minutes, long-term modifications last from hours up to a lifetime and are thought to constitute the basis of learning and memory. Both plasticity mechanisms have been studied extensively but how their interaction shapes synaptic dynamics is little known. To investigate how both short- and long-term plasticity together control the induction of synaptic depression and potentiation, we used numerical simulations and mathematical analysis of a calcium-based model, where pre- and postsynaptic activity induces calcium transients driving synaptic long-term plasticity. We found that the model implementing known synaptic short-term dynamics in the calcium transients can be successfully fitted to long-term plasticity data obtained in visual- and somatosensory cortex. Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the prevalent firing rate range, which is different in both cortical areas considered here. Our findings suggest that short- and long-term plasticity are together tuned to adapt plasticity to area-specific activity statistics such as firing rates.Author summarySynaptic long-term plasticity, the long-lasting change in efficacy of connections between neurons, is believed to underlie learning and memory. Synapses furthermore change their efficacy reversibly in an activity-dependent manner on the subsecond time scale, referred to as short-term plasticity. It is not known how both synaptic plasticity mechanisms – long- and short-term – interact during activity epochs. To address this question, we used a biologically-inspired plasticity model in which calcium drives changes in synaptic efficacy. We applied the model to plasticity data from visual- and somatosensory cortex and found that synaptic changes occur in very different firing rate ranges, which correspond to the prevalent firing rates in both structures. Our results suggest that short- and long-term plasticity act in a well concerted fashion.


Sign in / Sign up

Export Citation Format

Share Document