A limited and intermittent access to a high-fat diet modulates the effects of cocaine-induced reinstatement in the conditioned place preference in male and female mice

Author(s):  
Francisco Ródenas-González ◽  
María del Carmen Blanco-Gandía ◽  
María Pascual ◽  
Irene Molari ◽  
Consuelo Guerri ◽  
...  
2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A806-A806
Author(s):  
Rachel Bell ◽  
Elisa Villalobos ◽  
Mark Nixon ◽  
Allende Miguelez-Crespo ◽  
Matthew Sharp ◽  
...  

Abstract Glucocorticoids play a critical role in metabolic homeostasis. Chronic or excessive activation of the glucocorticoid receptor (GR) in adipose tissue contributes to metabolic disorders such as glucose intolerance and insulin resistance. Steroid-metabolising enzymes in adipose, such as 11β-HSD1 or 5α-reductase, modulate the activation of GR by converting primary glucocorticoids into more or less potent ligands. Carbonyl reductase 1 (CBR1) is a novel regulator of glucocorticoid metabolism, converting corticosterone/cortisol to 20β-dihydrocorticosterone/cortisol (20β-DHB/F); a metabolite which retains GR activity. CBR1 is abundant in adipose tissue and increased in obese adipose of mice and humans1 and increased Cbr1 expression is associated with increased fasting glucose1. We hypothesised that increased Cbr1/20β-DHB in obese adipose contributes to excessive GR activation and worsens glucose tolerance. We generated a novel murine model of adipose-specific Cbr1 over-expression (R26-Cbr1Adpq) by crossing conditional knock-in mice with Adiponectin-Cre mice. CBR1 protein and activity were doubled in subcutaneous adipose tissue of male and female R26-Cbr1Adpq mice compared with floxed controls; corresponding to a two-fold increase 20β-DHB (1.6 vs. 4.2ng/g adipose; P=0.0003; n=5-7/group). There were no differences in plasma 20β-DHB or corticosterone. Bodyweight, lean or fat mass, did not differ between male or female R26-Cbr1Adpq mice and floxed controls. Lean male R26-Cbr1Adpq mice had higher fasting glucose (9.5±0.3 vs. 8.4±0.3mmol/L; P=0.04) and worsened glucose tolerance (AUC 1819±66 vs. 1392±14; P=0.03). Female R26-Cbr1Adpq mice also had a worsened glucose tolerance but fasting glucose was not altered with genotype. There were no differences in fasting insulin or non-esterified fatty acid between genotypes in either sex. Expression of GR-induced genes Pnpla2, Gilz and Per1, were increased in adipose of R26-Cbr1Adpq mice. Following high-fat diet induced obesity, no differences in bodyweight, lean or fat mass, with genotype were observed in male and female mice, and genotype differences in fasting glucose and glucose tolerance were abolished. In conclusion, adipose-specific over-expression of Cbr1 in lean male and female mice led to increased levels of 20β-DHB in adipose but not plasma, and both sexes having worsened glucose tolerance. The influence of adipose CBR1/20β-DHB on glucose tolerance was not associated with altered fat mass or bodyweight and was attenuated by high-fat diet-induced obesity. These metabolic consequences of Cbr1 manipulation require careful consideration given the wide variation in CBR1 expression in the human population, the presence of inhibitors and enhancers in many foodstuffs and the proposed use of inhibitors as an adjunct for cancer treatment regimens. Reference: Morgan et al., Scientific Reports. 2017; 7.


2019 ◽  
Vol 149 (1) ◽  
pp. 73-97 ◽  
Author(s):  
Eugene Nyamugenda ◽  
Marcus Trentzsch ◽  
Susan Russell ◽  
Tiffany Miles ◽  
Gunnar Boysen ◽  
...  

2006 ◽  
Vol 14 (7S_Part_27) ◽  
pp. P1458-P1458
Author(s):  
Abigail E. Salinero ◽  
Lisa S. Robison ◽  
Brian M. Anderson ◽  
David Riccio ◽  
Kristen L. Zuloaga

2018 ◽  
Vol 50 (8) ◽  
pp. 605-614
Author(s):  
Hong He ◽  
Katie Holl ◽  
Sarah DeBehnke ◽  
Chay Teng Yeo ◽  
Polly Hansen ◽  
...  

Type 2 diabetes is a complex disorder affected by multiple genes and the environment. Our laboratory has shown that in response to a glucose challenge, two-pore channel 2 ( Tpcn2) knockout mice exhibit a decreased insulin response but normal glucose clearance, suggesting they have improved insulin sensitivity compared with wild-type mice. We tested the hypothesis that improved insulin sensitivity in Tpcn2 knockout mice would protect against the negative effects of a high fat diet. Male and female Tpcn2 knockout (KO), heterozygous (Het), and wild-type (WT) mice were fed a low-fat (LF) or high-fat (HF) diet for 24 wk. HF diet significantly increases body weight in WT mice relative to those on the LF diet; this HF diet-induced increase in body weight is blunted in the Het and KO mice. Despite the protection against diet-induced weight gain, however, Tpcn2 KO mice are not protected against HF-diet-induced changes in glucose or insulin area under the curve during glucose tolerance tests in female mice, while HF diet has no significant effect on glucose tolerance in the male mice, regardless of genotype. Glucose disappearance during an insulin tolerance test is augmented in male KO mice, consistent with our previous findings suggesting enhanced insulin sensitivity in these mice. Male KO mice exhibit increased fasting plasma total cholesterol and triglyceride concentrations relative to WT mice on the LF diet, but this difference disappears in HF diet-fed mice where there is increased cholesterol and triglycerides across all genotypes. These data demonstrate that knockout of Tpcn2 may increase insulin action in male, but not female, mice. In addition, both male and female KO mice are protected against diet-induced weight gain, but this protection is likely independent from glucose tolerance, insulin sensitivity, and plasma lipid levels.


2019 ◽  
Author(s):  
Ilona Binenbaum ◽  
Hanifa Abu-Toamih Atamni ◽  
Georgios Fotakis ◽  
Georgia Kontogianni ◽  
Theodoros Koutsandreas ◽  
...  

Abstract Background: The CC mouse population is a valuable resource to study the genetic basis of complex traits, such as obesity. Although the development of obesity is influenced by environmental factors, the underlying genetic mechanisms play a crucial role in the response to these factors. The interplay between the genetic background and the gene expression pattern can provide further insight into this response, but we lack robust and easily reproducible workflows to integrate genomic and transcriptomic information in the CC mouse population. Results: We established an automated and reproducible integrative workflow to analyse complex traits in the CC mouse genetic reference panel at the genomic and transcriptomic levels. We implemented the analytical workflow to assess the underlying genetic mechanisms of host susceptibility to diet induced obesity and integrate these results with diet induced changes in the hepatic gene expression of susceptible and resistant mice. Hepatic gene expression differs significantly between obese and non-obese mice, with a significant sex effect, where male and female mice exhibit different responses and coping mechanisms. Conclusion: Integration of the data showed that different genes but similar pathways are involved in the genetic susceptibility and disturbed in diet induced obesity. Genetic mechanisms underlying susceptibility to high-fat diet induced obesity differ in female and male mice. The clear distinction we observe in the systemic response to the high-fat diet challenge and to obesity between male and female mice points to the need for further research into distinct sex-related mechanisms in metabolic disease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Prableen K. Singh ◽  
Kabirullah Lutfy

Endogenous opioids have been implicated in cocaine reward. However, the role of each opioid peptide in this regard is unknown. Notably, the role of each peptide in extinction and reinstatement is not fully characterized. Thus, we assessed whether cocaine-induced conditioned place preference (CPP) and its extinction and reinstatement would be altered in the absence of beta-endorphin. We also examined if sex-related differences would exist in these processes. Male and female mice lacking beta-endorphin and their respective controls were tested for baseline place preference on day 1. On day 2, mice were treated with saline/cocaine (15 mg/kg) and confined to the vehicle- or drug-paired chamber for 30 min, respectively. In the afternoon, mice were treated with the alternate treatment and confined to the opposite chamber. Mice were then tested for CPP on day 3. Mice then received additional conditioning on this day as well as on day 4. Mice were then tested for CPP on day 5. Mice then received extinction training on day 9. On day 10, mice were tested for extinction and then reinstatement of CPP following a priming dose of cocaine (7.5 mg/kg). Male and female mice lacking beta-endorphin did not exhibit CPP following single conditioning with cocaine. On the other hand, only male mice lacking beta-endorphin failed to show CPP after repeated conditioning. Nonetheless, reinstatement of CPP was blunted in both male and female mice lacking beta-endorphin compared to controls. The present results suggest that beta-endorphin plays a functional role in cocaine-induced CPP and its reinstatement, and sex-related differences exist in the regulatory action of beta-endorphin on the acquisition but not reinstatement of cocaine CPP.


2020 ◽  
Author(s):  
Geronimo Matteo ◽  
Myriam P Hoyeck ◽  
Hannah L Blair ◽  
Julia Zebarth ◽  
Kayleigh RC Rick ◽  
...  

AbstractObjectiveHuman studies consistently show an association between exposure to persistent organic pollutants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka “dioxin”), and increased diabetes risk. We previously showed that acute high-dose TCDD exposure (20 μg/kg) decreased plasma insulin levels in both male and female mice in vivo; however, effects on glucose homeostasis were sex-dependent. The purpose of this study was to determine whether prolonged exposure to a physiologically relevant dose of TCDD impairs beta cell function and/or glucose homeostasis in a sex-dependent manner in either chow-fed or HFD-fed mice.MethodsMale and female mice were exposed to 20 ng/kg/d TCDD 2x/week for 12 weeks, and simultaneously fed a chow or 45% high-fat diet (HFD). Glucose metabolism was assessed by glucose and insulin tolerance tests throughout the study. Islets were isolated from females at 12 weeks for Tempo-Seq® analysis.ResultsLow-dose TCDD exposure did not lead to adverse metabolic consequences in chow-fed male or female mice, or in HFD-fed males. However, TCDD accelerated the onset of HFD-induced hyperglycemia and impaired glucose-induced plasma insulin levels in female mice. In addition, islet TempO-Seq® analysis showed that TCDD exposure promoted abnormal changes to endocrine and metabolic pathways in HFD-fed females.ConclusionsOur data suggest that TCDD exposure is more deleterious when combined with HFD-feeding in female mice, and that low-dose TCDD exposure increases diabetes susceptibility in females.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Ilona Binenbaum ◽  
Hanifa Abu-Toamih Atamni ◽  
Georgios Fotakis ◽  
Georgia Kontogianni ◽  
Theodoros Koutsandreas ◽  
...  

Abstract Background The Collaborative Cross (CC) mouse population is a valuable resource to study the genetic basis of complex traits, such as obesity. Although the development of obesity is influenced by environmental factors, underlying genetic mechanisms play a crucial role in the response to these factors. The interplay between the genetic background and the gene expression pattern can provide further insight into this response, but we lack robust and easily reproducible workflows to integrate genomic and transcriptomic information in the CC mouse population. Results We established an automated and reproducible integrative workflow to analyse complex traits in the CC mouse genetic reference panel at the genomic and transcriptomic levels. We implemented the analytical workflow to assess the underlying genetic mechanisms of host susceptibility to diet induced obesity and integrated these results with diet induced changes in the hepatic gene expression of susceptible and resistant mice. Hepatic gene expression differs significantly between obese and non-obese mice, with a significant sex effect, where male and female mice exhibit different responses and coping mechanisms. Conclusion Integration of the data showed that different genes but similar pathways are involved in the genetic susceptibility and disturbed in diet induced obesity. Genetic mechanisms underlying susceptibility to high-fat diet induced obesity are different in female and male mice. The clear distinction we observed in the systemic response to the high-fat diet challenge and to obesity between male and female mice points to the need for further research into distinct sex-related mechanisms in metabolic disease.


2017 ◽  
Vol 152 (5) ◽  
pp. S156
Author(s):  
Filippo Caremoli ◽  
Jennifer Huynh ◽  
Venu Lagishetty ◽  
Jonathan Jacobs ◽  
Jonathan Braun ◽  
...  

Author(s):  
Nadya M. Morrow ◽  
Natasha A. Trzaskalski ◽  
Antonio A. Hanson ◽  
Evgenia Fadzeyeva ◽  
Dawn E. Telford ◽  
...  

Objective: Nobiletin is a dietary flavonoid that improves insulin resistance and atherosclerosis in mice with metabolic dysfunction. Dysregulation of intestinal lipoprotein metabolism contributes to atherogenesis. The objective of the study was to determine if nobiletin targets the intestine to improve metabolic dysregulation in both male and female mice. Approach and Results: Triglyceride-rich lipoprotein (TRL) secretion, intracellular triglyceride kinetics, and intestinal morphology were determined in male and female LDL (low-density lipoprotein) receptor knockout, and male wild-type mice fed a standard laboratory diet or high-fat, high-cholesterol diet ± nobiletin using an olive oil gavage, radiotracers, and electron microscopy. Nobiletin attenuated postprandial TRL levels in plasma and enhanced TRL clearance. Nobiletin reduced fasting jejunal triglyceride accumulation through accelerated TRL secretion and lower jejunal fatty acid synthesis with no impact on fatty acid oxidation. Fasting-refeeding experiments revealed that nobiletin led to higher levels of phosphorylated AKT and FoxO1 (forkhead box O1) and normal Srebf1-c expression indicating increased insulin sensitivity. Intestinal length and weight were diminished by high-fat feeding and restored by nobiletin. Both fasting and postprandial plasma GLP-1 (glucagon-like peptide-1; and likely GLP-2) were elevated in response to nobiletin. Treatment with a GLP-2 receptor antagonist, GLP-2(3-33), reduced villus length in high fat-fed mice but did not impact TRL secretion in any diet group. In contrast to males, nobiletin did not improve postprandial lipid parameters in female mice. Conclusions: Nobiletin opposed the effects of the high-fat diet by normalizing intestinal de novo lipogenesis through improved insulin sensitivity. Nobiletin prevents postprandial lipemia because the enhanced TRL clearance more than compensates for increased TRL secretion.


Sign in / Sign up

Export Citation Format

Share Document