Design and preparation of open circuit potential biosensor for in vitro and in vivo glucose monitoring

2016 ◽  
Vol 409 (1) ◽  
pp. 161-168 ◽  
Author(s):  
Yonggui Song ◽  
Dan Su ◽  
Yuan Shen ◽  
Hongyu Liu ◽  
Li Wang
2022 ◽  
pp. 193229682110706
Author(s):  
Yutaro Inoue ◽  
Yasuhide Kusaka ◽  
Kotaro Shinozaki ◽  
Inyoung Lee ◽  
Koji Sode

Background: The bacterial derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (FADGDH) is the most promising enzyme for the third-generation principle-based enzyme sensor for continuous glucose monitoring (CGM). Due to the ability of the enzyme to transfer electrons directly to the electrode, recognized as direct electron transfer (DET)-type FADGDH, although no investigation has been reported about DET-type FADGDH employed on a miniaturized integrated electrode. Methods: The miniaturized integrated electrode was formed by sputtering gold (Au) onto a flexible film with 0.1 mm in thickness and divided into 3 parts. After an insulation layer was laminated, 3 openings for a working electrode, a counter electrode and a reference electrode were formed by dry etching. A reagent mix containing 1.2 × 10−4 Unit of DET-type FADGDH and carbon particles was deposited. The long-term stability of sensor was evaluated by continuous operation, and its performance was also evaluated in the presence of acetaminophen and the change in oxygen partial pressure (pO2) level. Results: The amperometric response of the sensor showed a linear response to glucose concentration up to 500 mg/dL without significant change of the response over an 11-day continuous measurement. Moreover, the effect of acetaminophen and pO2 on the response were negligible. Conclusions: These results indicate the superb potential of the DET-type FADGDH-based sensor with the combination of a miniaturized integrated electrode. Thus, the described miniaturized DET-type glucose sensor for CGM will be a promising tool for effective glycemic control. This will be further investigated using an in vivo study.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1624
Author(s):  
Orit Avior ◽  
Noa Ben Ghedalia-Peled ◽  
Tomer Ron ◽  
Razi Vago ◽  
Eli Aghion

The growing interest in Zn based alloys as structural materials for biodegradable implants is mainly attributed to the excellent biocompatibility of Zn and its important role in many physiological reactions. In addition, Zn based implants do not tend to produce hydrogen gas in in vivo conditions and hence do not promote the danger of gas embolism. However, Zn based implants can provoke encapsulation processes that, practically, may isolate the implant from its surrounding media, which limits its capability of performing as an acceptable biodegradable material. To overcome this problem, previous research carried out by the authors has paved the way for the development of Zn-Fe based alloys that have a relatively increased corrosion rate compared to pure Zn. The present study aims to evaluate the effect of 0.3–1.6% Ca on the in vitro behavior of Zn-Fe alloys and thus to further address the encapsulation problem. The in vitro assessment included immersion tests and electrochemical analysis in terms of open circuit potential, potentiodynamic polarization, and impedance spectroscopy in phosphate buffered saline (PBS) solution at 37 °C. The mechanical properties of the examined alloys were evaluated by tension and hardness tests while cytotoxicity properties were examined using indirect cell metabolic activity analysis. The obtained results indicated that Ca additions increased the corrosion rate of Zn-Fe alloys and in parallel increased their strength and hardness. This was mainly attributed to the formation of a Ca-rich phase in the form CaZn13. Cytotoxicity assessment showed that the cells’ metabolic activity on the tested alloys was adequate at over 90%, which was comparable to the cells’ metabolic activity on an inert reference alloy Ti-6Al-4V.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Daniel Mareci ◽  
Igor Cretescu ◽  
Neculai Aelenei ◽  
Julia Claudia Mirza Rosca

The electrochemical behavior of a three Ag-Pd alloys used in dental prosthetics construction for crowns and bridges was studied in artificial saliva using the polarization curves and electrochemical impedance spectroscopy (EIS). The corrosion resistance was evaluated by means of the corrosion currents value and by coulometric analysis. The open circuit potential of Ag-Pd are attributed to dealloying followed by surface enrichment with Ag and the possible formation of an insoluble AgCl surface film on the respective alloy surfaces. Our results have shown that these alloys have a somewhat good corrosion resistance in artificial saliva. When increasing the content of Cu, corrosion resistance decreases. The passivation of all samples occurred spontaneously at the open circuit potential. The electrochemical properties of the spontaneously passivated electrodes at the open circuit potential were studied by EIS. The polarization resistance (Rp) and the electrode capacitance (Cdl) were determined. The polarisation resistance of all the samples increases with the immersion time. The polarization resistances are largest and decrease when increasing the content of Cu. Cu reduces the Ag-Pd alloy corrosion resistance. The present study, thought limited, has shown that electrochemical characteristics can be use to identify such alloys. Knowledge of the in vitro corrosion behaviour of these alloys may lead to better understanding of any biologically adverse effects in vitro.


1986 ◽  
Vol 60 (3) ◽  
pp. 918-927 ◽  
Author(s):  
R. J. Phipps ◽  
S. M. Denas ◽  
M. W. Sielczak ◽  
A. Wanner

We studied the effects of ozone (O3) exposure on airway mucus secretion. Sheep were exposed in vivo to 0.5 ppm O3, 4 h/day for 2 days (acute, n = 6), 6 wks (chronic, n = 6) or 6 wks + 1 wk recovery (chronic + recovery, n = 6). Secretion of glycoproteins (radiolabeled with 35SO4 and [3H]threonine), and transepithelial fluxes of Cl-, Na+ and water were subsequently measured in tracheal tissues in vitro, and were compared with values from control, unexposed sheep (n = 8). Acute O3 exposure increased basal secretion of sulfated glycoproteins (P less than 0.05), but had no effect on ion fluxes. Chronic exposure reduced basal glycoprotein secretion, but increased net Cl- secretion. Under open-circuit conditions, chronic exposure also induced net water secretion (P less than 0.05). With 7 days recovery, basal glycoprotein secretion (predominantly sulfated) was greatly increased above control, while the increased net secretion of Cl- and of water persisted (P less than 0.05). Histology of the airways indicated that acute exposure induced moderate hypertrophy of submucosal glands in the lower trachea (P less than 0.05), while chronic exposure (with and without recovery) induced a large hypertrophy of submucosal glands in both upper and lower trachea (P less than 0.05). Without recovery, however, the gland cells were devoid of secretory material, whereas with recovery they were full of secretory material. This suggests that the decreased glycoprotein secretion with chronic exposure alone resulted from incomplete replenishment of intracellular stores after 6 wks of stimulation. We conclude that both short- and long-term O3 exposure causes airway-mucus hypersecretion.


1978 ◽  
Vol 234 (3) ◽  
pp. E228 ◽  
Author(s):  
T E Machen ◽  
W Silen ◽  
J G Forte

Gastric mucosas from newborn pigs (0--20 days) and rabbits (0--20 days) were used for in vitro investigation of active Na+ transport during resting (no HCl secretion) conditions. As measured with 22Na+, these tissues actively absorb Na+ from the mucosal-to serosal (m-t-s) bathing solution during both open-circuit and short-circuit current (Is) conditions. In the nonsecreting state, net Na+ transport accounts for 40--60% of Isc. The remaining current is provided by net s-to-m flux of Cl-. Amiloride (2-5 X 10(-5) M) in the mucosal solution abolishes this active Na+ transport by inhibiting m-to-s fluxes of Na+ (JNams). In vivo-in vitro experiments showed that active Na+ transport is a normal function of the resting mammalian stomach. Decreasing pH of the mucosal solution below pH 5 reversibly causes decreased current-generating capability of the tissue. Pretreatment of the tissue with amiloride abolishes this pH effect. The implication is that the low pH affects the Na+-entry step into cells. "Titration curves" of current vs. pH had an apparent pK approximately 4.0. Ouabain and K+-free solutions both cause decreases in active Na+ and Cl- current. Calculations indicate that a shunt may account for only a small (less than 30%) percentage of total transepithelial conductance.


1975 ◽  
Vol 62 (2) ◽  
pp. 357-366
Author(s):  
A. M. Jungreis ◽  
W. R. Harvey

1. The exuvial side of the pharate pupal integument is usually positive to the haemolymph-side, both in vivo and in vitro, during the period when the moulting fluid is being secreted. 2. The ratio of potassium flux toward the exuvial space is higher than that toward the haemolymph, under both open-circuit conditions and short-circuit conditions, demonstrating by the Flux Ratio test that potassium is actively transported across the isolated integument during this secretion period. 3. Just prior to ecdysis, while moulting fluid is being reabsorbed, the potassium flux ratios become unity, suggesting that active potassium transport has ceased, but the short-circuit current that remains suggests that some other ion is actively transported at this time. 4. We argue that the potassium salt solution, formed in the exuvial space (as water presumably follows the actively transported potassium), has three functions (1) to accomplish the gel--sol transformation, (2) to activate the gel enzymes and (3) to buffer the enzyme solution at a pH favourable to the activity of the gel enzymes.


1987 ◽  
Vol 62 (6) ◽  
pp. 2388-2397 ◽  
Author(s):  
R. J. Phipps ◽  
P. J. Torrealba ◽  
I. T. Lauredo ◽  
S. M. Denas ◽  
M. W. Sielczak ◽  
...  

In vivo instillation of Pasteurella haemolytica (greater than or equal to 10(7) colony-forming units/kg) into a lobar bronchus of sheep produced bacterial pneumonia by 7 days postinoculation. Infection was verified bacteriologically and histologically. Macromolecule secretion and ion and water fluxes were subsequently measured in tracheal tissues in vitro and were compared with values from sham-infected sheep. Macromolecules were radiolabeled with 35SO4 and [3H]threonine, and we measured the secretion of macromolecule-bound radiolabel onto the mucosa. Unidirectional fluxes of Cl-, Na+, and water were measured with radioactive tracers under open-circuit and short-circuit conditions. Lung infection increased basal secretion of bound 35SO4 (by 189%) and bound [3H]-threonine (by 110%). It significantly increased net Na+ absorption under open- and short-circuit conditions and induced open-circuit net absorption of Cl- and water (16 +/- 29 microliters X cm-2 X h-1). These changes were associated with specific recruitment of neutrophils and elevated levels of arachidonate metabolites (thromboxane B2 and leukotriene B4) in the airways. Thus the bacterial pneumonia-induced changes in tracheal mucus secretion may be the result of airway inflammation.


2018 ◽  
Vol 90 (21) ◽  
pp. 13021-13029 ◽  
Author(s):  
Fei Wu ◽  
Hanjun Cheng ◽  
Huan Wei ◽  
Tianyi Xiong ◽  
Ping Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document