Initial proteolysis of milk proteins and its effect on formation of ACE-inhibitory peptides during gastrointestinal proteolysis: a bioinformatic, in silico, approach

2005 ◽  
Vol 221 (5) ◽  
pp. 712-716 ◽  
Author(s):  
Are Hugo Pripp
2019 ◽  
Vol 20 (17) ◽  
pp. 4159 ◽  
Author(s):  
Dingyi Yu ◽  
Cong Wang ◽  
Yufeng Song ◽  
Junxiang Zhu ◽  
Xiaojun Zhang

In order to rapidly and efficiently excavate antihypertensive ingredients in Todarodes pacificus, its myosin heavy chain was hydrolyzed in silico and the angiotensin-converting enzyme (ACE) inhibitory peptides were predicted using integrated bioinformatics tools. The results showed the degree of hydrolysis (DH) theoretically achieved 56.8% when digested with papain, ficin, and prolyl endopeptidase (PREP), producing 126 ACE inhibitory peptides. By predicting the toxicity, allergenicity, gastrointestinal stability, and intestinal epithelial permeability, 30 peptides were finally screened, of which 21 had been reported and 9 were new. Moreover, the newly discovered peptides were synthesized to evaluate their in vitro ACE inhibition, showing Ile-Ile-Tyr and Asn-Pro-Pro-Lys had strong effects with a pIC50 of 4.58 and 4.41, respectively. Further, their interaction mechanisms and bonding configurations with ACE were explored by molecular simulation. The preferred conformation of Ile-Ile-Tyr and Asn-Pro-Pro-Lys located in ACE were successfully predicted using the appropriate docking parameters. The molecular dynamics (MD) result indicated that they bound tightly to the active site of ACE by means of coordination with Zn(II) and hydrogen bonding and hydrophobic interaction with the residues in the pockets of S1 and S2, resulting in stable complexes. In summary, this work proposed a strategy for screening and identifying antihypertensive peptides from Todarodes pacificus.


Author(s):  
ANDRIATI NINGRUM ◽  
HELI SITI HALIMATUL MUNAWAROH

Objective: This study explores the sustainable valorization of by-products from tuna fish based on in silico approach. Methods: In silico approaches (BIOPEP database, PeptideRanker database, peptide calculator [PepCalc] database, and toxin prediction [ToxinPred] database) were employed to evaluate the potential of collagens from tuna as a potential source of bioactive peptides. Furthermore, primary structure, biological potential, physicochemical, sensory, and toxicity characteristics of the theoretically released angiotensin-converting enzyme (ACE) inhibitor collagen peptides were predicted. Results: Tuna collagen was selected as a potential precursor of bioactive peptides based on in silico analysis. Most notable among these are ACE inhibitory peptides. First, the potential of tuna collagen for the releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are many bioactive peptides in tuna collagen sequences. Then, an in silico proteolysis using selected enzymes (papain and pepsin) to obtained ACE inhibitory peptides was investigated and then analyzed using PeptideRanker and PepCalc. Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all in silico proteolysis-derived ACE inhibitory peptides are non-cytotoxic. Conclusions: Overall, the present study highlights that the tuna collagens could be a promising precursor of bioactive peptides that have an antihypertensive effect (ACE inhibitory activities) for developing functional food or nutraceutical products.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1316
Author(s):  
Tanmoy Kumar Dey ◽  
Roshni Chatterjee ◽  
Rahul Shubhra Mandal ◽  
Anadi Roychoudhury ◽  
Debjyoti Paul ◽  
...  

Bellamya bengalensis muscle meat is known for ethnopharmacological benefits. The present study focuses on the identification of ACE inhibitory peptides from the proteolytic digests of muscle protein of Bellamya bengalensis and its underlying mechanism. After ultrafiltration of 120 min alcalase hydrolysates (BBPHA120) to isolate the small peptide fraction (<3 kDa), in vitro ACE inhibitory activity was analyzed. The IC50 value of the 120 min hydrolysate ultrafiltered fraction was 86.74 ± 0.575 µg/mL, while the IC50 of lisinopril was 0.31 ± 0.07 µg/mL. This fraction was assessed in a MALDI-ToF mass spectrometer and five peptides were identified from the mass spectrum based on their intensity (>1 × 104 A.U.). These peptides were sequenced via de novo sequencing. Based on the apparent hydrophobicity (%), the IIAPTPVPAAH peptide was selected for further analysis. The sequence was commercially synthesized by solid-phase standard Fmoc chemistry (purity 95–99.9%; by HPLC). The synthetic peptide (IC50 value 8.52 ± 0.779 µg/mL) was used to understand the thermodynamics of the inhibition by checking the binding affinity of the peptide to ACE by isothermal titration calorimetry compared with lisinopril, and the results were further substantiated by in silico site-specific molecular docking analysis. The results demonstrate that this peptide sequence (IIAPTPVPAAH) can be used as a nutraceutical with potent ACE inhibition.


2020 ◽  
Vol 22 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Kana Sumikawa ◽  
Kentaro Takei ◽  
Yuya Kumagai ◽  
Takeshi Shimizu ◽  
Hajime Yasui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document