scholarly journals Does sonification of action simulation training impact corticospinal excitability and audiomotor plasticity?

Author(s):  
Fabio Castro ◽  
Ladan Osman ◽  
Giovanni Di Pino ◽  
Aleksandra Vuckovic ◽  
Alexander Nowicky ◽  
...  

AbstractSonification is a sensory augmentation strategy whereby a sound is associated with, and modulated by, movement. Evidence suggests that sonification could be a viable strategy to maximize learning and rehabilitation. Recent studies investigated sonification of action observation, reporting beneficial effects, especially in Parkinson’s disease. However, research on simulation training—a training regime based on action observation and motor imagery, in which actions are internally simulated, without physical execution—suggest that action observation alone is suboptimal, compared to the combined use of action observation and motor imagery. In this study, we explored the effects of sonified action observation and motor imagery on corticospinal excitability, as well as to evaluate the extent of practice-dependent plasticity induced by this training. Nineteen participants were recruited to complete a practice session based on combined and congruent action observation and motor imagery (AOMI) and physical imitation of the same action. Prior to the beginning, participants were randomly assigned to one of two groups, one group (nine participants) completed the practice block with sonified AOMI, while the other group (ten participants) completed the practice without extrinsic auditory information and served as control group. To investigate practice-induced plasticity, participants completed two auditory paired associative stimulation (aPAS) protocols, one completed after the practice block, and another one completed alone, without additional interventions, at least 7 days before the practice. After the practice block, both groups significantly increased their corticospinal excitability, but sonification did not exert additional benefits, compared to non-sonified conditions. In addition, aPAS significantly increased corticospinal excitability when completed alone, but when it was primed by a practice block, no modulatory effects on corticospinal excitability were found. It is possible that sonification of combined action observation and motor imagery may not be a useful strategy to improve corticospinal, but further studies are needed to explore its relationship with performance improvements. We also confirm the neuromodulatory effect of aPAS, but its interaction with audiomotor practice remain unclear.

2021 ◽  
Vol 152 ◽  
pp. 105768
Author(s):  
Fabio Castro ◽  
Paulina Anna Bryjka ◽  
Giovanni Di Pino ◽  
Aleksandra Vuckovic ◽  
Alexander Nowicky ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Takefumi Moriuchi ◽  
Akira Nakashima ◽  
Jiro Nakamura ◽  
Kimika Anan ◽  
Keita Nishi ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5142 ◽  
Author(s):  
Ferran Cuenca-Martínez ◽  
Luis Suso-Martí ◽  
Mónica Grande-Alonso ◽  
Alba Paris-Alemany ◽  
Roy La Touche

Both motor imagery (MI) and action observation (AO) trigger the activation of the neurocognitive mechanisms that underlie the planning and execution of voluntary movements in a manner that resembles how the action is performed in a real way. The main objective of the present study was to compare the autonomic nervous system (ANS) response in an isolated MI group compared to a combined MI + AO group. The mental tasks were based on two simple movements that are recorded in the revised movement imagery questionnaire in third-person perspective. The secondary objective of the study was to test if there was any relationship between the ANS variables and the ability to generate mental motor imagery, the mental chronometry and the level of physical activity. The main outcomes that were measured were heart rate, respiratory rate and electrodermal activity. A Biopac MP150 system, a measurement device of autonomic changes, was used for the quantification and evaluation of autonomic variables. Forty five asymptomatic subjects were selected and randomized in three groups: isolated MI, MI + AO and control group (CG). In regards to the activation of the sympathetic nervous system (SNS), no differences were observed between MI and MI + AO groups (p > .05), although some differences were found between both groups when compared to the CG (p < .05). Additionally, even though no associations were reported between the ANS variables and the ability to generate mental motor imagery, moderate-strong positive associations were found in mental chronometry and the level of physical activity. Our results suggest that MI and MI + AO, lead to an activation of the SNS, although there are no significant differences between the two groups. Based on results obtained, we suggest that tasks of low complexity, providing a visual input through the AO does not facilitates their subsequent motor imagination. A higher level of physical activity as well as a longer time to perform mental task, seem to be associated with a greater increase in the ANS response.


2008 ◽  
Vol 104 (6) ◽  
pp. 1656-1664 ◽  
Author(s):  
Timothy J. Carroll ◽  
Michael Lee ◽  
Marlene Hsu ◽  
Janel Sayde

It has long been known that practicing a task with one limb can result in performance improvements with the opposite, untrained limb. Hypotheses to account for cross-limb transfer of performance state that the effect is mediated either by neural adaptations in higher order control centers that are accessible to both limbs, or that there is a “spillover” of neural drive to the opposite hemisphere that results in bilateral adaptation. Here we address these hypotheses by assessing performance and corticospinal excitability in both hands after unilateral practice of a ballistic finger movement. Participants ( n = 9) completed 300 practice trials of a ballistic task with the right hand, the aim of which was to maximize the peak abduction acceleration of the index finger. Practice caused a 140% improvement in right-hand performance and an 82% improvement for the untrained left hand. There were bilateral increases in the amplitude of responses to transcranial magnetic stimulation, but increased corticospinal excitability was not correlated with improved performance. There were no significant changes in corticospinal excitability or task performance for a control group that did not train ( n = 9), indicating that performance testing for the left hand alone did not induce performance or corticospinal effects. Although the data do not provide conclusive evidence whether increased corticospinal excitability in the untrained hand is causally related to the cross-transfer of ballistic performance, the finding that ballistic practice can induce bilateral corticospinal adaptations may have important clinical implications for movement rehabilitation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Célia Ruffino ◽  
Jérémie Gaveau ◽  
Charalambos Papaxanthis ◽  
Florent Lebon

AbstractMotor imagery, defined as the mental representation of an action without movement-related sensory inputs, is a well-known intervention to improve motor performance. In the current study, we tested whether use-dependent plasticity, a mechanism underlying motor learning, could be induced by an acute session of motor imagery. By means of transcranial magnetic stimulation (TMS) over the left primary motor cortex, we evoked isolated thumb movements in the right hand and assessed corticospinal excitability in the flexor and extensor pollicis brevis muscles. We measured the mean TMS-induced movement direction before and after an acute session of motor imagery practice. In a first experiment, participants of the imagery group were instructed to repeatedly imagine their thumb moving in a direction deviated by 90° from the pre-test movement. This group, but not the control group, deviated the post-training TMS-induced movements toward the training target direction (+44° ± 62° and −1° ± 23°, respectively). Interestingly, the deviation magnitude was driven by the corticospinal excitability increase in the agonist muscle. In a second experiment, we found that post-training TMS-induced movements were proportionally deviated toward the trained direction and returned to baseline 30 minutes after the motor imagery training. These findings suggest that motor imagery induces use-dependent plasticity and, this neural process is accompanied by corticospinal excitability increase in the agonist muscle.


2021 ◽  
pp. 1-3
Author(s):  
Ekin Ilke Sen

BACKGROUND: Motor imagery (MI) is a promising therapeutic technique for stroke rehabilitation. OBJECTIVE: To assess the effects of MI on gait rehabilitation after stroke. METHODS: To summarize the “Cochrane Review” by Silva et al. RESULTS: Twenty-one studies with 762 participants were included in the Cochrane review. Very low level of certainty evidence pointed to some beneficial effects of MI alone or combined with action observation or physical practice on walking speed compared to other therapies. There is uncertainty about the effect of MI compared to other therapies in terms of motor function or functional mobility. CONCLUSIONS: High-quality adequately powered studies investigating the effects of MI in individuals with stroke should be encouraged.


2019 ◽  
Author(s):  
Célia Ruffino ◽  
Jérémie Gaveau ◽  
Charalambos Papaxanthis ◽  
Florent Lebon

AbstractMotor imagery, defined as the mental representation of an action without movement-related sensory inputs, is a well-known intervention to improve motor performance. In the current study, we tested whether use-dependent plasticity, a mechanism underlying motor learning, could be induced by an acute session of motor imagery. By means of transcranial magnetic stimulation (TMS) over the left primary motor cortex, we evoked isolated thumb movements in the right hand and assessed corticospinal excitability in the flexor and extensor pollicis brevis muscles. We measured the mean TMS-induced movement direction before and after an acute session of motor imagery practice. In a first experiment, participants of the imagery group were instructed to repeatedly imagine their thumb moving in a direction deviated by 90° from the pre-test movement. This group, but not the control group, deviated the post-training TMS-induced movements toward the training target direction (+44° ±62° and −1° ±23°, respectively). Interestingly, the deviation magnitude was driven by the corticospinal excitability increase in the agonist muscle. In a second experiment, we found that post-training TMS-induced movements were proportionally deviated toward the trained direction and returned to baseline 30 minutes after the motor imagery training. These findings suggest that motor imagery induces use-dependent plasticity and, this neural process is accompanied by corticospinal excitability increase in the agonist muscle.


2018 ◽  
Vol 39 ◽  
pp. 114-121 ◽  
Author(s):  
David J. Wright ◽  
Greg Wood ◽  
Daniel L. Eaves ◽  
Adam M. Bruton ◽  
Cornelia Frank ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document