scholarly journals Is motor imagery effective for gait rehabilitation after stroke? A cochrane review summary with commentary

2021 ◽  
pp. 1-3
Author(s):  
Ekin Ilke Sen

BACKGROUND: Motor imagery (MI) is a promising therapeutic technique for stroke rehabilitation. OBJECTIVE: To assess the effects of MI on gait rehabilitation after stroke. METHODS: To summarize the “Cochrane Review” by Silva et al. RESULTS: Twenty-one studies with 762 participants were included in the Cochrane review. Very low level of certainty evidence pointed to some beneficial effects of MI alone or combined with action observation or physical practice on walking speed compared to other therapies. There is uncertainty about the effect of MI compared to other therapies in terms of motor function or functional mobility. CONCLUSIONS: High-quality adequately powered studies investigating the effects of MI in individuals with stroke should be encouraged.

2020 ◽  
Author(s):  
Hikaru Yokoyama ◽  
Naotsugu Kaneko ◽  
Katsumi Watanabe ◽  
Kimitaka Nakazawa

AbstractBrain decoding of motor imagery (MI) is crucial for the control of neuroprosthesis, and it provides insights into the underlying neural mechanisms. Walking consists of stance and swing phases, which are associated with different biomechanical and neural control features. However, previous studies on the decoding of the MI of walking focused on the classification of more simple information (e.g., walk and rest). Here, we investigated the feasibility of electroencephalogram (EEG) decoding of the two gait phases during the MI of walking and whether the combined use of MI and action observation (AO) would improve decoding accuracy. We demonstrated that the stance and swing phases could be decoded from EEGs during AO or MI alone. Additionally, the combined use of MI and AO improved decoding accuracy. The decoding models indicated that the improved decoding accuracy following the combined use of MI and AO was facilitated by the additional information resulting from the concurrent cortical activations by multiple regions associated with MI and AO. This study is the first to show that decoding the stance versus swing phases during MI is feasible. The current findings provide fundamental knowledge for neuroprosthetic design and gait rehabilitation, and they expand our understanding of the neural activity underlying AO, MI, and AO+MI of walking.Significance StatementBrain decoding of detailed gait-related information during motor imagery (MI) is important for brain-computer interfaces (BCIs) for gait rehabilitation. However, previous knowledge on decoding the motor imagery of gait is limited to simple information (e.g., the classification of “walking” and “rest”). Here, we demonstrated the feasibility of EEG decoding of the two gait phases during MI. We also demonstrated that the combined use of MI and action observation (AO) improves decoding accuracy, which is facilitated by the concurrent and synergistic involvement of the cortical activations by multiple regions for MI and AO. These findings extend the current understanding of neural activity and the combined effects of AO and MI and provide a basis for developing effective techniques for walking rehabilitation.


2021 ◽  
Author(s):  
Nuttawat Rungsirisilp ◽  
Yodchanan Wongsawat

Abstract Introduction: Upper extremity impairment is a problem usually found in poststroke patients, and it is seldom completely improved even following conventional physical therapy. Motor imagery (MI) and action observation (AO) therapy are mental practices that may regain motor function in poststroke patients, especially when integrating them with brain-computer interface (BCI) technology. However, previous studies have always investigated the effects of an MI- or AO-based BCI for stroke rehabilitation separately. Therefore, in this study, we aimed to propose the effectiveness of a combined AO and MI (AOMI)-based BCI with functional electrical stimulation (FES) feedback to improve upper limb functions and alter brain activity patterns in chronic stroke patients.Case presentation: A 53-year-old male who was 12 years post stroke was left hemiparesis and unable to produce any wrist and finger extension.Intervention: The participant was given an AOMI-based BCI with FES feedback 3 sessions per week for 4 consecutive weeks, and he did not receive any conventional physical therapy during the intervention. The Fugl-Meyer Assessment of Upper Extremity (FMA-UE) and active range of motion (AROM) of wrist extension were used as clinical assessments, and the laterality coefficient (LC) value was applied to explore the altered brain activity patterns affected by the intervention.Outcomes: The FMA-UE score improved from 34 to 46 points, and the AROM of wrist extension was increased from 0 degrees to 20 degrees. LC values in the alpha band tended to be positive whereas LC values in the beta band seemed to be slightly negative after the intervention.Conclusion: An AOMI-based BCI with FES feedback training may be a promising strategy that could improve motor function in poststroke patients; however, its efficacy should be studied in a larger population and compared to that of other therapeutic methods.Trial registration: Thai Clinical Trial Registry: TCTR20200821002. Registered 17 August 2020, http://www.thaiclinicaltrials.org


Author(s):  
Fabio Castro ◽  
Ladan Osman ◽  
Giovanni Di Pino ◽  
Aleksandra Vuckovic ◽  
Alexander Nowicky ◽  
...  

AbstractSonification is a sensory augmentation strategy whereby a sound is associated with, and modulated by, movement. Evidence suggests that sonification could be a viable strategy to maximize learning and rehabilitation. Recent studies investigated sonification of action observation, reporting beneficial effects, especially in Parkinson’s disease. However, research on simulation training—a training regime based on action observation and motor imagery, in which actions are internally simulated, without physical execution—suggest that action observation alone is suboptimal, compared to the combined use of action observation and motor imagery. In this study, we explored the effects of sonified action observation and motor imagery on corticospinal excitability, as well as to evaluate the extent of practice-dependent plasticity induced by this training. Nineteen participants were recruited to complete a practice session based on combined and congruent action observation and motor imagery (AOMI) and physical imitation of the same action. Prior to the beginning, participants were randomly assigned to one of two groups, one group (nine participants) completed the practice block with sonified AOMI, while the other group (ten participants) completed the practice without extrinsic auditory information and served as control group. To investigate practice-induced plasticity, participants completed two auditory paired associative stimulation (aPAS) protocols, one completed after the practice block, and another one completed alone, without additional interventions, at least 7 days before the practice. After the practice block, both groups significantly increased their corticospinal excitability, but sonification did not exert additional benefits, compared to non-sonified conditions. In addition, aPAS significantly increased corticospinal excitability when completed alone, but when it was primed by a practice block, no modulatory effects on corticospinal excitability were found. It is possible that sonification of combined action observation and motor imagery may not be a useful strategy to improve corticospinal, but further studies are needed to explore its relationship with performance improvements. We also confirm the neuromodulatory effect of aPAS, but its interaction with audiomotor practice remain unclear.


2011 ◽  
Vol 29 (supplement) ◽  
pp. 352-377 ◽  
Author(s):  
Seon Hee Jang ◽  
Frank E Pollick

The study of dance has been helpful to advance our understanding of how human brain networks of action observation are influenced by experience. However previous studies have not examined the effect of extensive visual experience alone: for example, an art critic or dance fan who has a rich experience of watching dance but negligible experience performing dance. To explore the effect of pure visual experience we performed a single experiment using functional Magnetic Resonance Imaging (fMRI) to compare the neural processing of dance actions in 3 groups: a) 14 ballet dancers, b) 10 experienced viewers, c) 12 novices without any extensive dance or viewing experience. Each of the 36 participants viewed short 2-second displays of ballet derived from motion capture of a professional ballerina. These displays represented the ballerina as only points of light at the major joints. We wished to study the action observation network broadly and thus included two different types of display and two different tasks for participants to perform. The two different displays were: a) brief movies of a ballet action and b) frames from the ballet movies with the points of lights connected by lines to show a ballet posture. The two different tasks were: a) passively observe the display and b) imagine performing the action depicted in the display. The two levels of display and task were combined factorially to produce four experimental conditions (observe movie, observe posture, motor imagery of movie, motor imagery of posture). The set of stimuli used in the experiment are available for download after this paper. A random effects ANOVA was performed on brain activity and an effect of experience was obtained in seven different brain areas including: right Temporoparietal Junction (TPJ), left Retrosplenial Cortex (RSC), right Primary Somatosensory Cortex (S1), bilateral Primary Motor Cortex (M1), right Orbitofrontal Cortex (OFC), right Temporal Pole (TP). The patterns of activation were plotted in each of these areas (TPJ, RSC, S1, M1, OFC, TP) to investigate more closely how the effect of experience changed across these areas. For this analysis, novices were treated as baseline and the relative effect of experience examined in the dancer and experienced viewer groups. Interpretation of these results suggests that both visual and motor experience appear equivalent in producing more extensive early processing of dance actions in early stages of representation (TPJ and RSC) and we hypothesise that this could be due to the involvement of autobiographical memory processes. The pattern of results found for dancers in S1 and M1 suggest that their perception of dance actions are enhanced by embodied processes. For example, the S1 results are consistent with claims that this brain area shows mirror properties. The pattern of results found for the experienced viewers in OFC and TP suggests that their perception of dance actions are enhanced by cognitive processes. For example, involving aspects of social cognition and hedonic processing – the experienced viewers find the motor imagery task more pleasant and have richer connections of dance to social memory. While aspects of our interpretation are speculative the core results clearly show common and distinct aspects of how viewing experience and physical experience shape brain responses to watching dance.


2021 ◽  
Vol 152 ◽  
pp. 105768
Author(s):  
Fabio Castro ◽  
Paulina Anna Bryjka ◽  
Giovanni Di Pino ◽  
Aleksandra Vuckovic ◽  
Alexander Nowicky ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 518
Author(s):  
Sara De Angelis ◽  
Alessandro Antonio Princi ◽  
Fulvio Dal Farra ◽  
Giovanni Morone ◽  
Carlo Caltagirone ◽  
...  

Postural instability and fear of falling represent two major causes of decreased mobility and quality of life in cerebrovascular and neurologic diseases. In recent years, rehabilitation strategies were carried out considering a combined sensorimotor intervention and an active involvement of the patients during the rehabilitation sessions. Accordingly, new technological devices and paradigms have been developed to increase the effectiveness of rehabilitation by integrating multisensory information and augmented feedback promoting the involvement of the cognitive paradigm in neurorehabilitation. In this context, the vibrotactile feedback (VF) could represent a peripheral therapeutic input, in order to provide spatial proprioceptive information to guide the patient during task-oriented exercises. The present systematic review and metanalysis aimed to explore the effectiveness of the VF on balance and gait rehabilitation in patients with neurological and cerebrovascular diseases. A total of 18 studies met the inclusion criteria and were included. Due to the lack of high-quality studies and heterogeneity of treatments protocols, clinical practice recommendations on the efficacy of VF cannot be made. Results show that VF-based intervention could be a safe complementary sensory-motor approach for balance and gait rehabilitation in patients with neurological and cerebrovascular diseases. More high-quality randomized controlled trials are needed.


Behaviour ◽  
2004 ◽  
Vol 141 (2) ◽  
pp. 233-244 ◽  
Author(s):  
Joanne Tuck ◽  
Mark Hassall

AbstractForaging behaviour of Armadillidium vulgare was observed in laboratory arenas in which the spatial distribution of patches of high quality food (powdered dicotyledonous leaf litter) was varied within a background of low quality food (powdered grass leaf litter). The hypotheses that the foraging behaviour and foraging path of A. vulgare would be influenced by food quality and the patchiness of high quality food resources were tested. More time was spent in high quality food patches than in low quality food backgrounds than expected by chance in all heterogeneity treatments, but an increasingly higher percentage of time was spent in low quality food as the high quality food became more clumped in space. More time was spent searching, but less time was spent feeding in low quality food backgrounds than in high quality food patches in all the treatments. Walking speed was found to be lower in high quality food patches than in low quality food backgrounds and this was not affected by treatment. Turning frequency and turning angle were found to be higher in high quality food patches than in low quality backgrounds. Turning frequency in low quality food backgrounds decreased as the high quality food became more clumped in space, whereas turning angle in high quality food patches significantly increased in the patchy, but then decreased again in the clumped treatment. The effects of varying the spatial heterogeneity of high quality foods on the trade-off between costs of searching and intake benefits for saprophages are discussed in relation to predictions from optimal foraging theory for circumstances when intake rate maximisation is affected by the constraint of limited nutrients.


Sign in / Sign up

Export Citation Format

Share Document