Bisphosphonate Maintains Parathyroid Hormone (1-34)-Induced Cortical Bone Mass and Mechanical Strength in Old Rats

1998 ◽  
Vol 62 (4) ◽  
pp. 316-322 ◽  
Author(s):  
C. Ejersted ◽  
H. Oxlund ◽  
T. T. Andreassen
Endocrinology ◽  
2016 ◽  
Vol 157 (8) ◽  
pp. 3242-3252 ◽  
Author(s):  
H. H. Farman ◽  
S. H. Windahl ◽  
L. Westberg ◽  
H. Isaksson ◽  
E. Egecioglu ◽  
...  

Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα−/−). Female POMC-ERα−/− and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα−/− mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.


Bone ◽  
2014 ◽  
Vol 67 ◽  
pp. 257-268 ◽  
Author(s):  
Sarah K. Amugongo ◽  
Wei Yao ◽  
Junjing Jia ◽  
Weiwei Dai ◽  
Yu-An E. Lay ◽  
...  

Bone ◽  
1995 ◽  
Vol 16 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Li. Mosekilde ◽  
C.C. Danielsen ◽  
C.H. Søgaard ◽  
J.E. McOsker ◽  
T.J. Wronski

2017 ◽  
Author(s):  
Rachel L Duckham ◽  
Timo Rantalainen ◽  
Christine Rodda ◽  
Anna Timperio ◽  
Nicola Hawley ◽  
...  

Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2132-2140 ◽  
Author(s):  
Keiichiro Kitahara ◽  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Intermittent PTH treatment increases cancellous bone mass in osteoporosis patients; however, it reveals diverse effects on cortical bone mass. Underlying molecular mechanisms for anabolic PTH actions are largely unknown. Because PTH regulates expression of osteopontin (OPN) in osteoblasts, OPN could be one of the targets of PTH in bone. Therefore, we examined the role of OPN in the PTH actions in bone. Intermittent PTH treatment neither altered whole long-bone bone mineral density nor changed cortical bone mass in wild-type 129 mice, although it enhanced cancellous bone volume as reported previously. In contrast, OPN deficiency induced PTH enhancement of whole-bone bone mineral density as well as cortical bone mass. Strikingly, although PTH suppressed periosteal bone formation rate (BFR) and mineral apposition rate (MAR) in cortical bone in wild type, OPN deficiency induced PTH activation of periosteal BFR and MAR. In cancellous bone, OPN deficiency further enhanced PTH increase in BFR and MAR. Analysis on the cellular bases for these phenomena indicated that OPN deficiency augmented PTH enhancement in the increase in mineralized nodule formation in vitro. OPN deficiency did not alter the levels of PTH enhancement of the excretion of deoxypyridinoline in urine, the osteoclast number in vivo, and tartrate-resistant acid phosphatase-positive cell development in vitro. These observations indicated that OPN deficiency specifically induces PTH activation of periosteal bone formation in the cortical bone envelope.


Sign in / Sign up

Export Citation Format

Share Document