Trophic ecology of the neustonic cnidarian Velella velella in the northern California Current during an extensive bloom year: insights from gut contents and stable isotope analysis

2018 ◽  
Vol 165 (9) ◽  
Author(s):  
Samantha M. Zeman ◽  
Marco Corrales-Ugalde ◽  
Richard D. Brodeur ◽  
Kelly R. Sutherland
The Condor ◽  
2004 ◽  
Vol 106 (3) ◽  
pp. 638-651 ◽  
Author(s):  
Cynthia A. Paszkowski ◽  
Beverly A. Gingras ◽  
Kayedon Wilcox ◽  
Paul H. Klatt ◽  
William M. Tonn

Abstract We compared trophic ecology of grebes inferred from stable-isotope analysis to that from gut contents, and compared isotopic ratios of Red-necked Grebes (Podiceps grisegena) from lakes differing in their food webs. Analyses of different grebe tissues (egg yolk and albumen, pectoral and leg muscle, breast and primary feathers) also allowed us to assess the effectiveness of these tissues at representing grebe trophic relations. Isotopic ratios from pectoral and leg muscles were similar, based on comparisons within individual birds. Enriched values of δ15N and δ13C suggested that breast and primary feathers were molted over winter, and therefore reflected a marine food web. Albumen and yolk of grebe eggs and muscle tissues from downy chicks, however, matched isotopic characteristics of the local food web, indicating that female Red-necked Grebes use nutrients from the breeding lake for egg formation. Eggs, therefore, can provide excellent material for isotopic analysis aimed at assessing trophic relations of Red-necked Grebes on breeding lakes. Gut contents and stable isotopes both indicated that grebes from lakes with fish consumed a mixed diet of fish and macroinvertebrates and occupied the highest trophic level, at or above the level of piscivorous fishes. In contrast, grebes from lakes lacking fish occupied a lower trophic position. Relaciones Tróficas de Podiceps grisegena en Lagos del Bosque Boreal del Oeste: Un Análisis de Isótopos Estables Resumen. Comparamos la ecología trófica de Podiceps inferida a partir de análisis de isótopos estables con la de contenidos estomacales y comparamos las relaciones isotópicas de P. grisegena entre lagos que difieren en sus redes tróficas. Los análisis de diferentes tejidos de P. grisegena (yema y albumen del huevo, músculo pectoral y de la pierna, plumas del pecho y primarias) también nos permitieron evaluar la efectividad de estos tejidos para representar las relaciones tróficas de P. grisegena. Las relaciones isotópicas de los músculos pectorales y de las piernas basadas en comparaciones realizadas para cada ave individual fueron similares. Valores enriquecidos de δ15N y δ13C sugirieron que las aves mudaron las plumas del pecho y las primarias durante el invierno, y por lo tanto reflejaron una red trófica marina. El albumen y la yema del huevo de P. grisegena y los tejidos musculares de pichones emplumados, sin embargo, coincidieron con las características isotópicas de la red alimenticia local, indicando que las hembras de P. grisegena usan nutrientes del lago donde nidifican para la formación de los huevos. Los huevos, por lo tanto, pueden constituir un material excelente para análisis isotópicos centrados en evaluar las relaciones tróficas de P. grisegena en los lagos donde se reproducen. Los contenidos estomacales y los isótopos estables indicaron que los individuos de P. grisegena provenientes de lagos con peces consumieron una dieta mixta de peces y macroinvertebrados y ocuparon la posición trófica más alta, al mismo nivel o por arriba de los peces piscívoros. En contraste, los individuos provenientes de lagos sin peces ocuparon una posición trófica menor.


2020 ◽  
Vol 651 ◽  
pp. 97-110
Author(s):  
JB Schram ◽  
HL Sorensen ◽  
RD Brodeur ◽  
AWE Galloway ◽  
KR Sutherland

During 2016-2018, unprecedented aggregations of the colonial pelagic tunicate Pyrosoma atlanticum were observed in the Northern California Current (NCC). Pyrosomes are common in tropical and sub-tropical ocean waters, but little is known about their abundance, distribution, and trophic ecology in mid-latitude systems. To assess these factors, pyrosomes were collected during cruises in the NCC in May and August 2017. A generalized additive model (GAM) was used to identify relationships between in situ environmental variables (temperature, salinity, fluorescence) and distribution and abundance patterns of pyrosomes in May 2017. Fatty acid (FA) profiles were then characterized as diet indicators, and bulk stable isotope analysis of carbon and nitrogen was used to examine spatial variations in potential food sources and trophic level. The GAM identified sea surface temperature and surface salinity as significant variables related to pyrosome densities. The most abundant FA in the pyrosomes was docosahexanoic acid (22:6ω3), which serves in pelagic systems as a biomarker for dinoflagellates. Common FA biomarkers for bacteria, carnivory, and dinoflagellates differed by latitude, suggesting that pyrosomes have different diets over a broad latitudinal range. The δ15N values of P. atlanticum indicate that pyrosomes may be feeding at a relatively low trophic level compared to other zooplankton groups in this region. Offshore pyrosomes had lower δ13C values than those collected on the shelf, suggesting incorporation of nearshore carbon in pyrosome tissues. Previously documented rapid reproduction and growth of pyrosomes coupled with efficient feeding behavior for common NCC plankters may support their continued presence in this mid-latitude region.


2020 ◽  
Vol 103 (2) ◽  
pp. 147-162
Author(s):  
Jonathan C. P. Reum ◽  
Gregory D. Williams ◽  
Chris J. Harvey ◽  
Kelly S. Andrews ◽  
Phillip S. Levin

2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Rigoberto Rosas-Luis ◽  
Nancy Cabanillas-Terán ◽  
Carmen A. Villegas-Sánchez

Abstract Kajikia audax, Thunnus albacares, Katsuwonus pelamis, and Auxis spp. occupy high and middle-level trophic positions in the food web. They represent important sources for fisheries in Ecuador. Despite their ecological and economic importance, studies on pelagic species in Ecuador are scarce. This study uses stable isotope analysis to assess the trophic ecology of these species, and to determine the contribution of prey to the predator tissue. Isotope data was used to test the hypothesis that medium-sized pelagic fish species have higher δ15N values than those of the prey they consumed, and that there is no overlap between their δ13C and δ15N values. Results showed higher δ15N values for K. audax, followed by T. albacares, Auxis spp. and K. pelamis, which indicates that the highest position in this food web is occupied by K. audax. The stable isotope Bayesian ellipses demonstrated that on a long time-scale, these species do not compete for food sources. Moreover, δ15N values were different between species and they decreased with a decrease in predator size.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fanyu Zhou ◽  
Junya Hirai ◽  
Koji Hamasaki ◽  
Sachiko Horii ◽  
Atsushi Tsuda

Euphausiids are abundant micronekton and important links between higher and lower trophic levels in marine ecosystems; however, their detailed diets cannot be fully understood by conventional microscopy, especially in subtropical areas. Here, we report the euphausiid community structure in the California Current (CC) area and the eastern/western North Pacific subtropical gyre (ESG and WSG) and detail the feeding ecology of the dominant species (Euphausia pacifica, E. brevis, and E. hemigibba) in each region using a combined approach of gut content analysis via 18S V9 metabarcoding and stable carbon and nitrogen isotope analysis. A pronounced omnivorous feeding of all studied euphausiid species was supported by both methods: phytoplanktonic taxonomic groups (Dinophyta, Stramenopiles, and Archaeplastida), Copepoda, and Hydrozoa were detected in the gut contents; all the three euphausiid species displayed an intermediate trophic position between the net plankton (0.2–1.0 mm) and the myctophid fish (15.2–85.5 mm). However, Hydrozoa found in euphausiid gut contents likely derived from a potential cod-end feeding, based on isotope analysis. E. pacifica in the CC province ingested more autotrophic prey, including pelagophyte and green algae, due to a greater abundance of Stramenopiles and Archaeplastida in shallow layers of CC water. On the other hand, non-autotrophic prey such as mixotrophic Kareniaceae dinoflagellates, Pontellidae and Clausocalanidae copepods, and Sphaerozoidae rhizarian contributed more to the diets of E. brevis and E. hemigibba because of a lower chlorophyll a concentration or potentially a scarcity of autotrophic prey availability in ESG and WSG. The feeding patterns of dominant euphausiid species conducting filter feeding were thus largely determined by phytoplankton prey availability in the environments. Dietary difference across three species was also indicated by stable isotope analysis, with a lower mean trophic level of E. pacifica (2.32) than E. brevis (2.48) and E. hemigibba (2.57). These results verify direct trophic interactions between euphausiids and primary production and suggest that the omnivorous feeding habit is a favorable character for dominant Euphausia species.


2012 ◽  
Vol 69 (7) ◽  
pp. 1277-1288 ◽  
Author(s):  
Hildur Petursdottir ◽  
Stig Falk-Petersen ◽  
Astthor Gislason

Abstract Petursdottir, H., Falk-Petersen, S., and Gislason, A. 2012. Trophic interactions of meso- and macrozooplankton and fish in the Iceland Sea as evaluated by fatty acid and stable isotope analysis. – ICES Journal of Marine Science, 69: . A trophic study was carried out in August of 2007 and 2008 on the pelagic ecosystem in the Subarctic Iceland Sea. Carbon and nitrogen stable isotopes and fatty acid biomarkers were used to study trophic linkages and the trophic ecology of the most important pelagic species in this ecosystem, with emphasis on capelin (Mallotus villosus). According to 15N enrichment results, there are 3–4 trophic levels in this ecosystem excluding organisms of the microbial loop and birds and mammals. The primarily herbivorous copepod Calanus hyperboreus occupies the lowest trophic level of the animal species studied, and adult capelin and blue whiting (Micromesistius poutassou) occupy the highest level. Calanus spp. proved to be an important dietary component of most of the species studied, the euphausiid species Thysanoessa inermis and T. longicaudata being exceptions. The chaetognath Eukrohnia hamata is a pure carnivore, feeding heavily on Calanus spp., whereas most of the other zooplankton species studied practice an omnivorous–carnivorous feeding mode. The amphipod species Themisto libellula is important in the diet of adult capelin. Adult capelin and blue whiting share the same feeding habits and could therefore be competing for food.


Sign in / Sign up

Export Citation Format

Share Document