Approximate solution for the temperature field of 1-D soil freezing process in a semi-infinite region

2012 ◽  
Vol 49 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Yang Zhou ◽  
Guoqing Zhou
2012 ◽  
Vol 9 (4) ◽  
pp. 1423-1440 ◽  
Author(s):  
C. S. Sturtevant ◽  
W. C. Oechel ◽  
D. Zona ◽  
Y. Kim ◽  
C. E. Emerson

Abstract. Accurate estimates of annual budgets of methane (CH4) efflux in arctic regions are severely constrained by the paucity of non-summer measurements. Moreover, the incomplete understanding of the ecosystem-level sensitivity of CH4 emissions to changes in tundra moisture makes prediction of future CH4 release from the Arctic extremely difficult. This study addresses some of these research gaps by presenting an analysis of eddy covariance and chamber measurements of CH4 efflux and supporting environmental variables during the autumn season and associated beginning of soil freeze-up at our large-scale water manipulation site near Barrow, Alaska (the Biocomplexity Experiment). We found that the autumn season CH4 emission is significant (accounting for 21–25% of the average growing season emission), and that this emission is mostly controlled by the fraction of inundated landscape, atmospheric turbulence, and the decline in unfrozen water during the period of soil freezing. Drainage decreased autumn CH4 emission by a factor of 2.4 compared to our flooded treatment. Flooding slowed the soil freezing process which has implications for extending elevated CH4 emissions longer into the winter season.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Bin Wang ◽  
Chuan-xin Rong ◽  
Jian Lin ◽  
Hua Cheng ◽  
Hai-bing Cai

Taking into account moisture migration and heat change during the soil freezing process, as well as the influence of absolute porosity reduction on seepage during the freezing process, we construct a numerical model of hydrothermal coupling using laws of conservation of energy and mass. The model is verified by the results of large-scale laboratory tests. By applying the numerical calculation model to the formation of artificial shaft freezing temperature fields under the action of large-flow groundwater, we conclude that groundwater with flow rates of less than 5 m/d will not have a significant impact on the artificial freezing temperature field. The maximum flow rates that can be handled by single-row freezing pipes and double-row freezing pipes are 10 m/d and 20 m/d, respectively, during the process of freezing shaft sinking. By analyzing the variation of groundwater flow rate during freezing process, we find that the groundwater flow velocity can reach 5–7 times the initial flow velocity near the closure moment of the frozen wall. Finally, in light of the action characteristics of groundwater on the freezing temperature field, we make suggestions for optimal pipe and row spacing in freezing pipe arrangement.


2017 ◽  
Vol 13 (1) ◽  
pp. 207-217 ◽  
Author(s):  
Guo-qing Zhou ◽  
Yang Zhou ◽  
Kun Hu ◽  
Yi-jiang Wang ◽  
Xiang-yu Shang

2011 ◽  
Vol 328-330 ◽  
pp. 9-12 ◽  
Author(s):  
Yong Shui Kang ◽  
Quan Sheng Liu ◽  
Jie Yan

Thermodynamic properties of water during phase transition in fractured rock are discussed. Thermodynamic equations of water in fractured rock while freezing were analyzed, and an example was simulated by FLAC3D. The stress field as well as the temperature field is obtained. The results demonstrated mechanical and thermal influences on rock due to phase transition of water in fractures.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2684
Author(s):  
Dawei Lei ◽  
Yugui Yang ◽  
Chengzheng Cai ◽  
Yong Chen ◽  
Songhe Wang

The freezing process of saturated soil is studied under the condition of water replenishment. The process of soil freezing was simulated based on the theory of the energy and mass conservation equations and the equation of mechanical equilibrium. The accuracy of the model was verified by comparison with the experimental results of soil freezing. One-side freezing of a saturated 10-cm-high soil column in an open system with different parameters was simulated, and the effects of the initial void ratio, hydraulic conductivity, and thermal conductivity of soil particles on soil frost heave, freezing depth, and ice lenses distribution during soil freezing were explored. During the freezing process, water migrates from the warm end to the frozen fringe under the actions of the temperature gradient and pore pressure. During the initial period of freezing, the frozen front quickly moves downward, the freezing depth is about 5 cm after freezing for 30 h, and the final freezing depth remains about 6 cm. The freezing depth of the soil column is affected by soil porosity and thermal conductivity, but the final freezing depth mainly depends on the temperatures of the top and lower surfaces. The frost heave is mainly related to the amount of water migration. The relationship between the amount of frost heave and the hydraulic conductivity is positively correlated, and the thickness of the stable ice lens is greatly affected by the hydraulic conductivity. With the increase of the hydraulic conductivity and initial void ratio, the formation of ice lenses in the soil become easier. With the increase of the initial void ratio and thermal conductivity of soil particles, the frost heave of the soil column also increases. With high-thermal-conductivity soil, the formation of ice lenses become difficult.


2013 ◽  
Vol 6 (5) ◽  
pp. 349-357 ◽  
Author(s):  
E. Du ◽  
Z. Zhou ◽  
P. Li ◽  
L. Jiang ◽  
X. Hu ◽  
...  

2009 ◽  
Vol 7 (1) ◽  
Author(s):  
R. Chapko ◽  
B.T. Johansson

In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lin Pan ◽  
Xuelei Cheng ◽  
Jinhong Xia

The significant differences in specific heat and thermal conductivity of ice and water lead to the changes of specific heat and thermal conductivity of soil during the freezing process. This makes it hard for the temperature field similarity criterion based on constant thermal parameters to accurately reflect the temperature field evolution of soil mass caused by nonlinearity of thermal parameters in the process. Based on heat conduction differential equation considering nonlinear changes of thermal parameters, this paper uses similarity transformation method to derive the similarity criterion of the temperature field in the frozen soil model test and arrives at the conclusion that the prototype soil and model soil should meet when the original soil is used for the model test. At the same time, given the impact of the third boundary condition on the similarity criterion, the thermal physical similarity conditions for the model soil are derived. On this basis, ABAQUS finite element software is used to numerically simulate the linear and nonlinear prototype and model temperature fields. The third boundary condition considered the temperature evolution of the characteristic points during the freezing process is analyzed. The calculation results indicate that the nonlinear thermal conductivity similarity criterion established herein can correctly reflect the evolution process of the prototype frozen soil temperature field. It is also suggested that the model soil thermal parameters are reasonably calculated. At the same time, it shows that the nonlinear freezing similarity criterion of the soil, when the third boundary condition is satisfied, has clear physical meaning and higher practical value. The research results provide a practical and reasonable parameter calculation method for the model soil preparation in the frozen soil model test and a theoretical basis and technical support for the design and implementation of the water-heat-force coupling model test on frozen soil.


Sign in / Sign up

Export Citation Format

Share Document