scholarly journals The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2684
Author(s):  
Dawei Lei ◽  
Yugui Yang ◽  
Chengzheng Cai ◽  
Yong Chen ◽  
Songhe Wang

The freezing process of saturated soil is studied under the condition of water replenishment. The process of soil freezing was simulated based on the theory of the energy and mass conservation equations and the equation of mechanical equilibrium. The accuracy of the model was verified by comparison with the experimental results of soil freezing. One-side freezing of a saturated 10-cm-high soil column in an open system with different parameters was simulated, and the effects of the initial void ratio, hydraulic conductivity, and thermal conductivity of soil particles on soil frost heave, freezing depth, and ice lenses distribution during soil freezing were explored. During the freezing process, water migrates from the warm end to the frozen fringe under the actions of the temperature gradient and pore pressure. During the initial period of freezing, the frozen front quickly moves downward, the freezing depth is about 5 cm after freezing for 30 h, and the final freezing depth remains about 6 cm. The freezing depth of the soil column is affected by soil porosity and thermal conductivity, but the final freezing depth mainly depends on the temperatures of the top and lower surfaces. The frost heave is mainly related to the amount of water migration. The relationship between the amount of frost heave and the hydraulic conductivity is positively correlated, and the thickness of the stable ice lens is greatly affected by the hydraulic conductivity. With the increase of the hydraulic conductivity and initial void ratio, the formation of ice lenses in the soil become easier. With the increase of the initial void ratio and thermal conductivity of soil particles, the frost heave of the soil column also increases. With high-thermal-conductivity soil, the formation of ice lenses become difficult.

1989 ◽  
Vol 26 (1) ◽  
pp. 9-21 ◽  
Author(s):  
J.-M. Konrad

Laboratory freezing tests were performed on a saturated clayey silt at various overconsolidation ratios (OCR) to establish the relationship between initial void ratio and stress history, and the amount of moisture transfer during freezing. The frost heave tests were analysed in terms of the segregation potential as well as a function of the temperature of ice lens formation and the overall hydraulic conductivity of the frozen fringe. All other factors being the same, the segregation potential was found to increase with increasing values of OCR (decreasing initial void ratios). However, the combined effects of decreasing void ratio and increasing suction at the frost line, all other factors being identical in all freezing tests, resulted in decreasing segregation potentials. This trend was the result of a decrease in the temperature of ice lens formation and the concomitant decrease in overall hydraulic conductivity of the frozen fringe. A simple model showed that the capillary unfrozen water between clay particles increases when the particles pack closer together, as overconsolidation increases, allowing the migratory water to freeze within the frozen soil at a colder temperature. Key words: frost heave, clayey silt, overconsolidation, void ratio.


2017 ◽  
Vol 13 (1) ◽  
pp. 207-217 ◽  
Author(s):  
Guo-qing Zhou ◽  
Yang Zhou ◽  
Kun Hu ◽  
Yi-jiang Wang ◽  
Xiang-yu Shang

Author(s):  
Rajith Sudilan Dayarathne ◽  
Bipul C. Hawlader ◽  
Ryan Phillips ◽  
Dilan Robert

Coupled thermo-hydro-mechanical finite element (FE) modelling of thaw consolidation is presented. One-dimensional FE analyses are performed for thaw consolidation of a soil column due to self-weight and with a combination of self-weight and surcharge, with the linear and nonlinear void ratio–effective stress–hydraulic conductivity relationships of thawed soil. The nonlinear behaviour of thawed soil is modelled using a modified Drucker–Prager Cap model, while the hydraulic conductivity is varied with the void ratio. Finally, two-dimensional FE modelling of thaw consolidation around a warm pipeline buried in permafrost is performed. The rapid reduction of the void ratio with consolidation, especially at the low-stress level, results in a wide variation of hydraulic conductivity within the thawed zone. The significantly large hydraulic conductivity of soil elements along the curved thaw front, as compared to that of thaw consolidated soil, causes the flow of water along the thaw front, instead of a vertical flow, as assumed in previous 1-D thaw consolidation modelling of buried pipelines.


1991 ◽  
Vol 28 (6) ◽  
pp. 843-859 ◽  
Author(s):  
J. F. (Derick) Nixon

The existing segregation potential (SP) method for frost heave prediction in soils is semiempirical in nature and does not explicitly predict the relationship between heave rate, temperature gradient, and other more fundamental soil properties. The SP method assumes that the heave rate is directly related to the temperature gradient at the frost front but acknowledges that the SP parameter is dependent on pressure, suction at the frost front, cooling rate, soil type, and so forth. This paper extends and modifies an approximate analytical technique of Gilpin and accounts for the effects of distributed phase change within the freezing fringe in both the head- and mass-transfer components of the formulation. The approach requires as input a relationship between frozen hydraulic conductivity and temperature and predicts the discrete location of each ice lens within the freezing soil. The solution can be carried out quickly on a microcomputer to obtain the heave, suction at the frost front, ice lens temperature, and other results of interest with time. Furthermore, the discrete ice lens method predicts the effects of changing overburden pressure on the predicted heave rate. A method of extracting input parameters for the discrete ice lens procedure from a series of frost heave tests is proposed. The discrete ice theory has been tested and calibrated against well-documented frost heave test results in the literature, and very encouraging agreement between prediction and observation has been obtained. Key words: frost heave, discrete ice lens, segregation potential, hydraulic conductivity of frozen soil, freezing soil.


2004 ◽  
Vol 41 (5) ◽  
pp. 787-795 ◽  
Author(s):  
Robert P Chapuis

This paper assesses methods to predict the saturated hydraulic conductivity, k, of clean sand and gravel. Currently, in engineering, the most widely used predictive methods are those of Hazen and the Naval Facilities Engineering Command (NAVFAC). This paper shows how the Hazen equation, which is valid only for loose packing when the porosity, n, is close to its maximum value, can be extended to any value of n the soil can take when its maximum value of n is known. The resulting extended Hazen equation is compared with the single equation that summarizes the NAVFAC chart. The predictive capacity of the two equations is assessed using published laboratory data for homogenized sand and gravel specimens, with an effective diameter d10 between 0.13 and 1.98 mm and a void ratio e between 0.4 and 1.5. A new equation is proposed, based on a best fit equation in a graph of the logarithm of measured k versus the logarithm of d102e3/(1 + e). The distribution curves of the differences “log(measured k) – log(predicted k)” have mean values of –0.07, –0.21, and 0.00 for the extended Hazen, NAVFAC, and new equations, respectively, with standard deviations of 0.23, 0.36, and 0.10, respectively. Using the values of d10 and e, the new equation predicts a k value usually between 0.5 and 2.0 times the measured k value for the considered data. It is shown that the predictive capacity of this new equation may be extended to natural nonplastic silty soils, but not to crushed soils or plastic silty soils. The paper discusses several factors affecting the inaccuracy of predictions and laboratory test results.Key words: permeability, sand, prediction, porosity, gradation curve.


2012 ◽  
Vol 16 (2) ◽  
pp. 501-515 ◽  
Author(s):  
R. M. Nagare ◽  
R. A. Schincariol ◽  
W. L. Quinton ◽  
M. Hayashi

Abstract. There are not many studies that report water movement in freezing peat. Soil column studies under controlled laboratory settings can help isolate and understand the effects of different factors controlling freezing of the active layer in organic covered permafrost terrain. In this study, four peat Mesocosms were subjected to temperature gradients by bringing the Mesocosm tops in contact with sub-zero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost). Soil water movement towards the freezing front (from warmer to colder regions) was inferred from soil freezing curves, liquid water content time series and from the total water content of frozen core samples collected at the end of freezing cycle. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period appeared to have moved upwards during freezing. Diffusion under moisture gradients and effects of temperature on soil matric potential, at least in the initial period, appear to drive such movement as seen from analysis of freezing curves. Freezing front (separation front between soil zones containing and free of ice) propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost.


2012 ◽  
Vol 9 (4) ◽  
pp. 1423-1440 ◽  
Author(s):  
C. S. Sturtevant ◽  
W. C. Oechel ◽  
D. Zona ◽  
Y. Kim ◽  
C. E. Emerson

Abstract. Accurate estimates of annual budgets of methane (CH4) efflux in arctic regions are severely constrained by the paucity of non-summer measurements. Moreover, the incomplete understanding of the ecosystem-level sensitivity of CH4 emissions to changes in tundra moisture makes prediction of future CH4 release from the Arctic extremely difficult. This study addresses some of these research gaps by presenting an analysis of eddy covariance and chamber measurements of CH4 efflux and supporting environmental variables during the autumn season and associated beginning of soil freeze-up at our large-scale water manipulation site near Barrow, Alaska (the Biocomplexity Experiment). We found that the autumn season CH4 emission is significant (accounting for 21–25% of the average growing season emission), and that this emission is mostly controlled by the fraction of inundated landscape, atmospheric turbulence, and the decline in unfrozen water during the period of soil freezing. Drainage decreased autumn CH4 emission by a factor of 2.4 compared to our flooded treatment. Flooding slowed the soil freezing process which has implications for extending elevated CH4 emissions longer into the winter season.


Author(s):  
Jerzy Antoni Żurański ◽  
Andrzej Sobolewski

The paper deals with the probabilistic method of the assessment of the depth of soil freezing. Annual (winter) maxima of the position of the zero centigrade temperature measured in the soil were approximated by Gumbel probability distribution. Its parameters were estimated using maximum likelihood method. Results received on the base of data from 2 meteorological stations and 30 years of observations, called as characteristic values of 50-year return period, refelect the influence of the climatic conditions on the freezing depth. On the other hand the soil structure and its conditions also play an important role in freezing. Nowadays they may be taken into account using correction coefficients. It is concluded that this methods is more precise than a method using so called air freezing index. Received results are not the same as given in the old Polish Standard. New analysis is currently being done.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1235
Author(s):  
Xiaoying Qiao ◽  
Shaoyang Ma ◽  
Guixing Pan ◽  
Guanglu Liu

The soil-water characteristic curve (SWCC) is the basis for obtaining the hydraulic conductivity parameters of a soil as well as for using soil water and heat transport models. At present, the curve can be obtained by two methods: by direct measurement and by empirical formula. Direct measurement is both difficult and time-consuming. By contrast, fitting the SWCC with a suitable empirical formula is stable and convenient. The van Genuchten (VG) model has the advantage of universal applicability due to its use of a statistical aperture distribution model for estimating hydraulic conductivity. This study selected the Mu Us Bottomland as a study area. Data on the water content and water potential of undisturbed soil from this site were obtained with a Ku-pF instrument and a self-designed soil column experiment with temperature settings of 13 °C, 18 °C, 23 °C, 27 °C, and 30 °C. The variation of four main parameters in the VG model with temperature was analyzed based on thermodynamic theory and considering the effect of temperature on soil capillary pressure via its effects on surface tension and contact angle. A prediction model for the soil-water characteristic curve of the Mu Us Bottomland was then constructed, and its applicability was further analyzed. The temperature dependence of the SWCC demonstrated here provides an important scientific basis for agricultural production, farmland water conservancy, and the design of soil and water conservation engineering projects.


Sign in / Sign up

Export Citation Format

Share Document