Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

2016 ◽  
Vol 52 (11) ◽  
pp. 2551-2562
Author(s):  
Salem Banooni ◽  
Ali Chitsazan
2019 ◽  
Author(s):  
Budi Santoso ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Genta Praha Picaso

2009 ◽  
Vol 13 (4) ◽  
pp. 91-98
Author(s):  
Elazm Abo ◽  
Farouk Elsafty

The main objective of this study is to find a proper solution for the cross-flow water cooling tower problem, also to find an empirical correlation's controlling heat and mass transfer coefficients as functions of inlet parameters to the tower. This is achieved by constructing an experimental rig and a computer program. The computer simulation solves the problem numerically. The apparatus used in this study comprises a cross-flow cooling tower. From the results obtained, the 'characteristic curve' of cross-flow cooling towers was constructed. This curve is very helpful for designers in order to find the actual value of the number of transfer units, if the values of inlet water temperature or inlet air wet bulb temperature are changed. Also an empirical correlation was conducted to obtain the required number of transfer units of the tower in hot water operation. Another correlation was found to obtain the effectiveness in the wet bulb operation.


2018 ◽  
Vol 225 ◽  
pp. 01023
Author(s):  
T.M. Yusof ◽  
M.F. Basrawi ◽  
A. Shahrani ◽  
H. Ibrahim

Ground heat exchanger is an exciting technique to reduce energy consumption in building especially in hot climate countries. Implementation of GHE for commercial unit in Malaysia is almost none in record. Thus, performance study of the GHE in Malaysia is crucial to be conducted either experimentally or numerically. Therefore, this paper presents the performance of GHE in term of effectiveness, outlet temperature and rate of heat transfer based on mathematical model. The model is developed based on cross flow heat exchanger with one fluid unmixed. There are two variable parameter used in the analysis which is effectiveness and flowrate of the air for 25 meter length of a PVC pipe. Three effectiveness values which is 0.8, 0.9 and 0.99 have been analysed in this study. Meanwhile, flowrate of air is ranging from 0.02 to 0.2 kg/s. Results show that flowrate at 0.02 kg/s gives great temperature reduction in the pipe compared with higher flowrate. However, flowrate of 0.2 kg/s produces higher cooling potential. Characteristic of the GHE for the rate of heat transfer with 80, 90 and 99 percent effectiveness also have been developed and it has been found that effectiveness of 0.9 provide good combination between flowrate and the rate of heat transfer for 25 meter length of the pipe


2019 ◽  
Vol 11 (4) ◽  
pp. 1078 ◽  
Author(s):  
Carmen Calama-González ◽  
Rafael Suárez ◽  
Ángel León-Rodríguez ◽  
Simone Ferrari

In the Mediterranean climate, a large number of educational buildings suffer from discomfort due mostly to energy-deficient thermal envelopes and a lack of cooling systems. Impending climate change is expected to worsen overheating in classrooms, especially during heatwave periods. Therefore, the protection of window openings to reduce incident solar radiation while maintaining adequate indoor environmental quality must be considered a necessary key focus. The main objective of this research is to assess the influence of an egg-crate shading device on the indoor environmental quality of a classroom in Southern Spain. To do so, two classrooms—with and without this shading device—were simultaneously monitored over a whole year. The implementation of an egg-crate shading device allowed for a significant reduction of the incident solar radiation, both in summer and mid-season (around 45–50%), which objectively slightly conditioned indoor operative temperatures. Given the noticeable influence of the user patterns observed, indoor illuminance was also improved, as the rolling shutters tended to be opened at higher aperture levels.


Author(s):  
A. Montakhab

Because of its relatively high coolant temperature, the closed cycle gas turbine HTGR is well adapted to dry cooling and its waste heat can be rejected with relatively low cost. The preliminary design of natural-draft dry cooling towers for a 1200 MW(e) GT-HTGR is presented. The effects of air approach velocity, capacity rates of air and water mediums, and number of heat exchanger cross flow passes on salient tower and heat exchanger dimensions are studied. Optimum tower designs are achieved with three cross flow passes for the heat exchanger, resulting in a simultaneous minimization of tower height, heat exchanger surface area and circulating water pumping power. Four alternative tower designs are considered and their relative merits are compared. It is concluded that the 1200 MW(e) plant can be cooled by a single tower design which is well within the present state of the natural-draft dry cooling tower technology. In comparison, the fossil-fired or HTGR steam plants of the same output is shown to need three such towers.


Author(s):  
S. Pal ◽  
L. J. Peltier ◽  
A. Rizhakov ◽  
M. P. Kinzel ◽  
M. H. Elbert ◽  
...  

The performance of cooling towers, whether operating by themselves, or in close vicinity of other cooling towers can be adversely affected by the re-ingestion of the cooling tower discharge into the tower intakes. The recirculation of the discharge from a wet cooling tower raises the wet bulb temperature of the air entering a wet cooling tower. Current design strategies, often account for this discharge re-ingestion issue, through a conservative adjustment to the far field ambient wet bulb temperature to calculate the actual intake wet bulb temperature. Critical applications, such as those related to nuclear safety applications where there is concern about cooling tower performance, may require more accurate and comprehensive assessment of the recirculation and dispersion of cooling tower discharge. Gaussian plume models alone are of limited use when dealing with discharges in the vicinity of large structures. This paper discusses the use of a computational fluid dynamics approach to evaluate worst case discharge recirculation effects in cooling towers. The bounding design values of tower intake wet bulb temperature increase due to recirculation (ingestion of tower’s own discharge), and interference (ingestion of another interfering tower’s discharge), are calculated considering the various conditions of cooling tower operation, ambient temperature, humidity and wind conditions. The RANS CFD model used in the study is evaluated against published experimental data for flow over bluff bodies at high Reynolds numbers, and experimental data on buoyant jets in cross flow.


2020 ◽  
Vol 216 ◽  
pp. 01151
Author(s):  
Daniyar Bakhtiyarovich Madrakhimov ◽  
Vera Pavlovna Ivanova ◽  
Victoria Vyacheslavovna Tsypkina

Reliability of cable lines in hot climate is determined by the climatic characteristics of cables and wires, which include: long-term and short-term heat resistance, cold resistance, moisture resistance, resistance to cyclic exposure to temperatures and solar radiation, ozone resistance, etc. This article considers the main impacts of environmental factors: high temperatures, solar radiation, which, as practice shows, lead to irreversible deterioration of the electrical and mechanical properties of cable products. The result of climatic impacts in the Central Asian region, in hot climate conditions, is the aging of both insulation and protective coverings, which leads to irreversible change in the mechanical and electrical properties of the used polymers due to the loss of elasticity of the extruded material and its subsequent cracking, turning into cracks. The assessment of the possibility of long-term operation of the used polymer was carried out according to the polyethylene oxidation period, which determines the time of natural preservation of various types of cables during the period of their operation. The research was carried out on samples of cables stored under a canopy in wooden boxes, protected from sunlight and precipitation, by measuring criterion parameters with strict compliance with the established norms. Thus, the proposed solution for increasing the reliability of cable lines consists of debugging the technological process of applying insulation and sheathing, in which the extrusion of the polymer mass is carried out by technique that minimizes the ingress of contamination. Review of the results showed that extrusion line improvement would provide possibility of increasing reliability in the operation of cable products under the impact of climatic factors of the Central Asian region due to the reduced aging of insulation.


1977 ◽  
Author(s):  
T. Snyder ◽  
J. Bentley ◽  
M. Giebler ◽  
L.R. Glicksman ◽  
W.M. Rohsenow

Sign in / Sign up

Export Citation Format

Share Document