Effects of Lipophilic Ions on Outer Hair Cell Membrane Capacitance and Motility

1998 ◽  
Vol 166 (2) ◽  
pp. 111-118 ◽  
Author(s):  
M. Wu ◽  
J. Santos-Sacchi
2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Kristopher R. Schumacher ◽  
Aleksander S. Popel ◽  
Bahman Anvari ◽  
William E. Brownell ◽  
Alexander A. Spector

Cell membrane tethers are formed naturally (e.g., in leukocyte rolling) and experimentally to probe membrane properties. In cochlear outer hair cells, the plasma membrane is part of the trilayer lateral wall, where the membrane is attached to the cytoskeleton by a system of radial pillars. The mechanics of these cells is important to the sound amplification and frequency selectivity of the ear. We present a modeling study to simulate the membrane deflection, bending, and interaction with the cytoskeleton in the outer hair cell tether pulling experiment. In our analysis, three regions of the membrane are considered: the body of a cylindrical tether, the area where the membrane is attached and interacts with the cytoskeleton, and the transition region between the two. By using a computational method, we found the shape of the membrane in all three regions over a range of tether lengths and forces observed in experiments. We also analyze the effects of biophysical properties of the membrane, including the bending modulus and the forces of the membrane adhesion to the cytoskeleton. The model’s results provide a better understanding of the mechanics of tethers pulled from cell membranes.


2003 ◽  
Vol 43 (3) ◽  
pp. 355-360 ◽  
Author(s):  
A. A. Spector ◽  
R. P. Jean

1998 ◽  
Vol 275 (4) ◽  
pp. H1216-H1224 ◽  
Author(s):  
Seth J. Rials ◽  
Xiaoping Xu ◽  
Ying Wu ◽  
Roger A. Marinchak ◽  
Peter R. Kowey

Recent studies indicate that regression of left ventricular hypertrophy (LVH) normalizes the in situ electrophysiological abnormalities of the left ventricle. This study was designed to determine whether regression of LVH also normalizes the abnormalities of individual membrane currents. LVH was induced in rabbits by renal artery banding. Single ventricular myocytes from rabbits with LVH at 3 mo after renal artery banding demonstrated increased cell membrane capacitance, prolonged action potential duration, decreased inward rectifier K+ current density, and increased transient outward K+ current density compared with myocytes from age-matched controls. Additional rabbits were randomized at 3 mo after banding to treatment with either vehicle or captopril for an additional 3 mo. Myocytes from LVH rabbits treated with vehicle showed persistent membrane current abnormalities. However, myocytes isolated from LVH rabbits treated with captopril had normal cell membrane capacitance, action potential duration, and membrane current densities. Captopril had no direct effect on membrane currents of either control or LVH myocytes. These data support the hypothesis that the action potential prolongation and membrane current abnormalities of LVH are reversed by regression. Normalization of membrane currents probably explains the reduced vulnerability to ventricular arrhythmia observed in this LVH model after treatment with captopril.


1993 ◽  
Vol 70 (1) ◽  
pp. 299-323 ◽  
Author(s):  
P. Dallos ◽  
R. Hallworth ◽  
B. N. Evans

1. A theory of cochlear outer hair cell electromotility is developed and specifically applied to somatic shape changes elicited in a microchamber. The microchamber permits the arbitrary electrical and mechanical partitioning of the outer hair cell along its length. This means that the two partitioned segments are stimulated with different input voltages and undergo different shape changes. Consequently, by imposing more constraints than other methods, experiments in the microchamber are particularly suitable for testing different theories of outer hair cell motility. 2. The present model is based on simple hypotheses. They include a distributed motor associated with the cell membrane or cortex and the assumption that the displacement generated by the motor is related to the transmembrane voltage across the associated membrane element. It is expected that the force generated by the motor is counterbalanced by an elastic restoring force indigenous to the cell membrane and cortex, and a tensile force due to intracellular pressure. It is assumed that all changes take place while total cell volume is conserved. The above elements of the theory taken together permit the development of qualitative and quantitative predictions about the expected motile responses of both partitioned segments of the cell. Only a DC treatment is offered here. 3. Both a linear motor and an expanded treatment that incorporates a stochastic molecular motor model are considered. The latter is represented by a two-state Boltzmann process. We show that the linear motor treatment is an appropriate extrapolation of the stochastic motor theory for the case of small voltage driving signals. Comparison of experimental results with model responses permits the estimation of model parameters. Good match of data is obtained if it is assumed that the molecular motors undergo conformational length changes of 0.7-1.0 nm, that they have an effective displacement vector at approximately -20 degrees with the long axis of the cell, and that their linear density is approximately 80/microns. 4. An effort is made to parcel out motile response components that are a direct consequence of the motor action from those that are mediated by cytoplasmic pressure changes brought about by the concerted action of the motors. We show that pressure effects are of minor importance, and thus rule out models that rely on radial constriction/expansion-mediated internal pressure change as the primary cause of longitudinal motility. 5. As a consequence of the interaction between the Boltzmann process and the mechanical characteristics of the cell, the electromotile response is asymmetric.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 53 (5) ◽  
pp. 405-413 ◽  
Author(s):  
Ben Harland ◽  
Wen-han Lee ◽  
William E. Brownell ◽  
Sean X. Sun ◽  
Alexander A. Spector

Sign in / Sign up

Export Citation Format

Share Document