Associations Among Rhizobial Chromosomal Background, nod Genes, and Host Plants Based on the Analysis of Symbiosis of Indigenous Rhizobia and Wild Legumes Native to Xinjiang

2009 ◽  
Vol 59 (2) ◽  
pp. 311-323 ◽  
Author(s):  
Tian Xu Han ◽  
Chang Fu Tian ◽  
En Tao Wang ◽  
Wen Xin Chen
Keyword(s):  
1991 ◽  
Vol 18 (5) ◽  
pp. 543 ◽  
Author(s):  
MA Djordjevic ◽  
JJ Weinman

Rhizobia are microbes that exploit host plants as a nutritional source but cause little or no host damage. They may provide, through biological nitrogen fixation, a valuable source of nitrogen for plant growth. Different rhizobia nodulate a limited range of plants. In this review we will show that host range specificity is determined by the success or otherwise of communication events between the interacting partners. To infect different plant species, a distinct cocktail of phenolic compounds (flavonoids) is recognised. Flavonoids of the correct structure induce the expression of several bacterial nodulation (nod) and other genes required for plant infection. Flavonoids of the incorrect, but related, structure can antagonise nod gene induction. Some nod genes are responsible for the synthesis of a small family of lipo-oligosaccharides necessary for the triggering of a defined but complex series of morphological responses in the host plant including root hair curling and cortical cell division. Lipo-oligosaccharides are active at concentrations of between 10-8 and 10-12 M. The appropriate lipo-oligosaccharide required for infection of one plant host can have antagonistic effects on other non-host plants and this effect appears to be determined by minor chemical changes to the basic lipo-oligosaccharide structure. Apart from host specificity operating at the genus level, other interdependent nod gene functions determine host specificity at the cultivar level. A complex interplay between positively and negatively acting nod genes and a single host gene affects cultivar specificity in a manner analogous to, but more complex than, the gene-for-gene interactions common amongst plant-pathogen interactions.


2019 ◽  
Vol 32 (11) ◽  
pp. 1517-1525 ◽  
Author(s):  
Nico Nouwen ◽  
Daniel Gargani ◽  
Eric Giraud

As inducers of nodulation (nod) genes, flavonoids play an important role in the symbiotic interaction between rhizobia and legumes. However, in addition to the control of expression of nod genes, many other effects of flavonoids on rhizobial cells have been described. Here, we show that the flavonoid naringenin stimulates the growth of the photosynthetic Bradyrhizobium sp. strain ORS285. This growth-stimulating effect was still observed for strain ORS285 with nodD1, nodD2, or the naringenin-degrading fde operon deleted. Phenotypic microarray analysis indicates that in cells grown in the presence of naringenin, the glycerol and fatty acid metabolism is activated. Moreover, electron microscopic and enzymatic analyses show that polyhydroxy alkanoate metabolism is altered in cells grown in the presence of naringenin. Although strain ORS285 was able to degrade naringenin, a fraction was converted into an intensely yellow-colored molecule with an m/z (+) of 363.0716. Further analysis indicates that this molecule is a hydroxylated and O-methylated form of naringenin. In contrast to naringenin, this derivative did not induce nod gene expression, but it did stimulate the growth of strain ORS285. We hypothesize that the growth stimulation and metabolic changes induced by naringenin are part of a mechanism to facilitate the colonization and infection of naringenin-exuding host plants.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


2019 ◽  
Vol 18 (2) ◽  
pp. 127
Author(s):  
Purnama Hidayat ◽  
Denny Bintoro ◽  
Lia Nurulalia ◽  
Muhammad Basri

Species identification, host range, and identification key of whiteflies of Bogor and surrounding area. Whitefly (Hemiptera: Aleyrodidae) is a group of insects that are small, white, soft-bodied, and easily found on various agricultural crops. Whitefly is a phytophagous insect; some species are important pests in agricultural crops that can cause direct damage and can become vectors of viral diseases. The last few years the damage caused by whitefly in Indonesia has increased. Unfortunately, information about their species and host plants in Indonesia, including in Bogor, is still limited. Kalshoven, in his book entitled Pest of Crops in Indonesia, published in the 1980s reported that there were 9 species of whitefly in Indonesia. The information on the book should be reconfirmed. Therefore, this study was conducted to determine whitefly species and its host plants in Bogor and its surroundings. Whiteflies is identified based on the ‘puparia’ (the last instar of the nymph) collected from various agricultural plants, ornamental plants, weeds, and forest plants. A total of 35 species of whiteflies were collected from 74 species and 29 families of plants. The collwcted whiteflies consist of four species belong to Subfamily Aleurodicinae and 31 species of Subfamily Aleyrodinae. The most often found whitefly species were Aleurodicus dispersus, A. dugesii, and Bemisia tabaci. A dichotomous identification key of whiteflies was completed based on morphological character of 35 collected species. The number of whitefly species in Bogor and surrounding areas were far exceeded the number of species reported previously by Kalshoven from all regions in Indonesia.


2014 ◽  
Vol 13 (3) ◽  
Author(s):  
Rawati Panjaitan

Mites have hostplant specifications or host plants. Mites can be destructive and deadly of which is the host plants a mango crop. Mites on mango crops will cause the leaves yellow and fall off prematurely. This is will lead to the disruption of the productivity of mango. It is necessary for research to identify the mites that infect the mango crop. The method is carried out by direct observation. Mites were taken from the surface of mango leaves later in preservation with several levels of concentration of alcohol, and polyvinyl laktofenol. Then, observed under a microscope and documented for identification purposes. Mites on the leaf surface of manalagi mango (<em>Mangifera indica</em>) found two species, it is <em>Oligonychus</em> sp. and <em>Oligonychus ilicis</em> (Family: Tetranychidae, Superfamily: Tetranychoidea). <em>Oligonychus</em> sp. hallmark is rounded body shape like a spider, with a body is transparent and there are two long seta on posterior part. While <em>Oligonychus ilicis</em> has a characteristic elongated rounded body shape, red, and there is a short posterior seta. <em>Oligonychus</em> sp. and <em>Oligonychus ilicis</em> live as parasites on the surface of mango leaves that can lead to wrinkled leaves, yellow and to fall. <em>Oligonychus</em> life cycle starts from the eggs develop into Nympha and then adult.


Sign in / Sign up

Export Citation Format

Share Document