scholarly journals The Modification of the Flavonoid Naringenin by Bradyrhizobium sp. Strain ORS285 Changes the nod Genes Inducer Function to a Growth Stimulator

2019 ◽  
Vol 32 (11) ◽  
pp. 1517-1525 ◽  
Author(s):  
Nico Nouwen ◽  
Daniel Gargani ◽  
Eric Giraud

As inducers of nodulation (nod) genes, flavonoids play an important role in the symbiotic interaction between rhizobia and legumes. However, in addition to the control of expression of nod genes, many other effects of flavonoids on rhizobial cells have been described. Here, we show that the flavonoid naringenin stimulates the growth of the photosynthetic Bradyrhizobium sp. strain ORS285. This growth-stimulating effect was still observed for strain ORS285 with nodD1, nodD2, or the naringenin-degrading fde operon deleted. Phenotypic microarray analysis indicates that in cells grown in the presence of naringenin, the glycerol and fatty acid metabolism is activated. Moreover, electron microscopic and enzymatic analyses show that polyhydroxy alkanoate metabolism is altered in cells grown in the presence of naringenin. Although strain ORS285 was able to degrade naringenin, a fraction was converted into an intensely yellow-colored molecule with an m/z (+) of 363.0716. Further analysis indicates that this molecule is a hydroxylated and O-methylated form of naringenin. In contrast to naringenin, this derivative did not induce nod gene expression, but it did stimulate the growth of strain ORS285. We hypothesize that the growth stimulation and metabolic changes induced by naringenin are part of a mechanism to facilitate the colonization and infection of naringenin-exuding host plants.

1973 ◽  
Vol 13 (3) ◽  
pp. 799-809
Author(s):  
A. MICHAELS ◽  
A. GIBOR

The structural changes associated with the ultraviolet-induced bleaching of light-grown cells of Euglena gracilis were investigated. Our light- and electron-microscopic observations of the bleaching process indicate that there is a continuity of plastid structure in cells 5 generations after receiving a bleaching dose of ultraviolet light. There seems to be a continuous dilution of the plastid thylakoids and a decrease in plastid size in the bleaching cells. There also seems to be a change in the position of the plastids in relation to the mitochondria in the bleaching cells. The plastids and possibly the mitochondria are the only organelles which are affected by the ultraviolet irradiation. The continuity of plastids in bleaching cells of Euglena is discussed in relation to the proposed effect of the ultraviolet light.


1994 ◽  
Vol 34 (3) ◽  
pp. 385 ◽  
Author(s):  
RR Gault ◽  
A Pilka ◽  
DM Hebb ◽  
J Brockwell

Strains of rhizobia were isolated from soil around the roots of tagasaste (Chamaecytisus palmensis) growing at 15 widely separated locations in south-eastem Australia. A further collection of strains of both Rhizobium loti and Bradyrhizobium sp. (Lotus) was assembled from 18 legumes including Lotus and other species symbiotically related to Lotus. The strains were used to inoculate tagasaste and 4 species of Lotus in experiments conducted under bacteriologically controlled conditions in a temperature-controlled glasshouse. Tagasaste formed nodules and fixed N2 with all of its homologous rhizobia but there was a wide range of effectiveness among the 15 strains. Tagasaste also formed nodules with each of the 18 strains from other species but fixed N2 with only 10. Four species of Lotus were inoculated with 3 tagasaste strains. One strain nodulated each species and fixed N2 with L. conimhricensis and L. corniculatus but not with L. parviflorus or L. pedunculatus. A second tagasaste strain formed nodules with all 4 Lotus spp. but did not fix N2, while the third nodulated only L. pedunculatus but did not fix N2. A pattern analysis based on the nodulating ability of the host plants in association with 21 strains showed that tagasaste and L. corniculatus formed 1 symbiotic group, and the other 3 Lotus species formed a third group. The pattern analysis procedure based on nodulating capacity of 21 rhizobial strains in association with the 5 host species indicated substantial symbiotic diversity within the collection, with the strains comprising 8 different symbiotic groups. No strain was highly effective on both tagasaste and any of the 4 species of Lotus. Data were insufficient to classify the root-nodule bacteria of tagasaste as either Rhizobium loti or Bradyrhizobium sp. (Lotus).


1987 ◽  
Vol 105 (2) ◽  
pp. 679-689 ◽  
Author(s):  
K Sandvig ◽  
S Olsnes ◽  
O W Petersen ◽  
B van Deurs

Acidification of the cytosol of a number of different cell lines strongly reduced the endocytic uptake of transferrin and epidermal growth factor. The number of transferrin binding sites at the cell surface was increased in acidified cells. Electron microscopic studies showed that the number of coated pits at the cell surface was not reduced in cells with acidified cytosol. Experiments with transferrin-horseradish peroxidase conjugates and a monoclonal anti-transferrin receptor antibody demonstrated that transferrin receptors were present in approximately 75% of the coated pits both in control cells and in cells with acidified cytosol. The data therefore indicate that the reason for the reduced endocytic uptake of transferrin at internal pH less than 6.5 is an inhibition of the pinching off of coated vesicles. In contrast, acidification of the cytosol had only little effect on the uptake of ricin and the fluid phase marker lucifer yellow. Ricin endocytosed by cells with acidified cytosol exhibited full toxic effect on the cells. Although the pathway of this uptake in acidified cells remains uncertain, some coated pits may still be involved. However, the data are also consistent with the possibility that an alternative endocytic pathway involving smooth (uncoated) pits exists.


1956 ◽  
Vol 54 (3) ◽  
pp. 393-400 ◽  
Author(s):  
T. H. Flewett

Sections of chorio-allantoic membranes fixed at intervals after infection with large doses of vaccinia virus showed almost homogeneous areas appearing in the cytoplasm after 4 hr.; these areas contained immature forms of virus which had a thin surface membrane and an eccentric ‘nucleoid’, and were surrounded by mitochondria. Mature forms of virus, having a larger central nucleus-like structure and a thicker cortex, were first found in areas of virus growth 10 hr. after inoculation. Similar immature and mature forms were found in cells infected with fowl-pox, myxomatosis and ectromelia viruses. It is concluded that the immature forms are of low infectivity or not infective.


2011 ◽  
Vol 24 (11) ◽  
pp. 1359-1371 ◽  
Author(s):  
Katia Bonaldi ◽  
Daniel Gargani ◽  
Yves Prin ◽  
Joel Fardoux ◽  
Djamel Gully ◽  
...  

Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein–labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.


1957 ◽  
Vol 3 (3) ◽  
pp. 505-508 ◽  
Author(s):  
Councilman Morgan ◽  
Gabriel C. Godman ◽  
Harry M. Rose ◽  
Calderon Howe ◽  
Joseph S. Huang

1965 ◽  
Vol 26 (2) ◽  
pp. 395-412 ◽  
Author(s):  
Sarah P. Gibbs ◽  
W. R. Sistrom ◽  
Patricia B. Worden

By varying the light intensity and temperature during growth it is possible to obtain cultures of Rhodospirillum molischianum in which the specific bacteriochlorophyll contents differ by as much as fivefold. We used such cultures to compare the changes in the electron microscopic appearance of the cells with the changes in the amount and bacteriochlorophyll content of chromatophore material isolated from cell extracts. The cells contained a variable number of internal membranes which are invaginations of the cell membrane. The shape, size, number, and arrangement of the infoldings varied as the specific bacteriochlorophyll content of the cells changed. In cells with little bacteriochlorophyll, the invaginations were mostly tubular. In cells with larger amounts of bacteriochlorophyll, the invaginations were disc-shaped and the discs were appressed together in stacks of 2 to 10 discs each. Variations in the number of discs per stack could be accounted for by a simple statistical model. The average area per disc increased with increasing bacteriochlorophyll content. Quantitative estimations of the relative volumes occupied by membranes in cells with four different bacteriochlorophyll contents showed that the amount of internal membrane alone had no direct relationship with the bacteriochlorophyll content of the cells; however, the total amount of membrane (cell membrane plus internal membrane) was directly proportional to the bacteriochlorophyll content. The specific bacteriochlorophyll content of isolated chromatophore material was proportional to the bacteriochlorophyll content of whole cells; the total amount of chromatophore material was independent of the bacteriochlorophyll content of whole cells. Several possible explanations of this paradoxical discrepancy between the electron microscope observations and the analytical results are discussed.


2020 ◽  
Author(s):  
Michael Caplow

AbstractYeast secrete ATP in response to glucose, a property with previously unknown functional consequence. In this report, we show that extracellular ATP is a signal for growth of surrounding cells. The ATP signaling behavior was uncovered by finding reduced toxicity of an inducible, dominant-lethal form of alpha tubulin (tub1-828) in cells grown at high, compared to low cell density. Reduced cell death at high cell density resulted because the rate of chromosome loss/cell division was lower (18-fold) in a cultures inoculated with a high density (350,000) compared to a low density (5,000) of cells. The sparing effect of growth at high cell density could be replicated by growing together 3440 cells that express tub1-828, with 2.3 E6 cells that do not express the mutant protein. Toxicity was reduced at high cell density apparently because a secreted signal induces growth, so that the mutant protein is rapidly diluted by synthesis of wild-type α-tubulin. Further, fluorescence-activated cell sorting (FACS) analysis after DNA staining showed that the rate of the G1-G2 transition was faster with cells at high density. ATP replaced the need for high cell density for resistance to tub1-828, and stimulated the transition from G1 to G2 in cells at low density. Cells lacking the enzyme nucleoside diphosphate kinase did not respond to nucleotide stimulation of growth during expression of mutant tubulin, suggesting that NDP kinase has a regulatory role in growth stimulation. This newly discovered quorum sensing response in yeast, mediated by ATP, indicates that yeast decision-making is not entirely autonomous.


Sign in / Sign up

Export Citation Format

Share Document