Algal Exudates and Stream Organic Matter Influence the Structure and Function of Denitrifying Bacterial Communities

2012 ◽  
Vol 64 (4) ◽  
pp. 881-892 ◽  
Author(s):  
Kathryn N. Kalscheur ◽  
Miguel Rojas ◽  
Christopher G. Peterson ◽  
John J. Kelly ◽  
Kimberly A. Gray
2018 ◽  
Author(s):  
Mario E. Muscarella ◽  
Claudia M. Boot ◽  
Corey D. Broeckling ◽  
Jay T. Lennon

ABSTRACTMicrobial diversity is strongly affected by the bottom-up effects of resource availability. However, because resource pools often exist as heterogeneous mixtures of distinct molecules, resource heterogeneity may also affect community diversity. To test this hypothesis, we surveyed bacterial communities in lakes that varied in resource concentration. In addition, we characterized resource heterogeneity in these lakes using an ecosystem metabolomics approach. Overall, resource concentration and resource heterogeneity affected bacterial resource-diversity relationships. We found strong relationships between bacterial alpha-diversity (richness and evenness) and resource concentration and richness, but richness and evenness responded in different ways. Likewise, we found associations between the composition of the bacterial community and both resource concentration and composition, but the relationship with resource composition was stronger. Last, in the surveyed communities the presence of resource generalists may have reduced the effect of resource heterogeneity on community composition. These results have implications for understanding the interactions between bacteria and organic matter and suggest that changes in organic matter composition may alter the structure and function of bacterial communities.


Author(s):  
Shen Jean Lim ◽  
Brenton Davis ◽  
Danielle Gill ◽  
John Swetenburg ◽  
Laurie C Anderson ◽  
...  

Abstract Lucinid bivalves harbor environmentally acquired, chemosynthetic, gammaproteobacterial gill endosymbionts. Lucinid gill microbiomes, which may contain other gammaproteobacterial and/or spirochete taxa, remain under-sampled. To understand inter-host variability of the lucinid gill microbiome, specifically in the bacterial communities, we analyzed the microbiome content of Stewartia floridana collected from Florida. Sampled gills contained a monospecific gammaproteobacterial endosymbiont expressing lithoautotrophic, mixotrophic, diazotrophic, and C1 compound oxidation-related functions previously characterized in similar lucinid species. Another low-abundance Spirochaeta-like species in ∼72% of the sampled gills was most closely related to Spirochaeta-like species in another lucinid Phacoides pectinatus and formed a clade with known marine Spirochaeta symbionts. The spirochete expressed genes were involved in heterotrophy and the transport of sugars, amino acids, peptides, and other substrates. Few muscular and neurofilament genes from the host and none from the gammaproteobacterial and spirochete symbionts were differentially expressed among quadrats predominantly covered with seagrass species or 80% bare sand. Our results suggest that spirochetes are facultatively associated with S. floridana, with potential scavenging and nutrient cycling roles. Expressed stress- and defense-related functions in the host and symbionts also suggest species-species communications, which highlight the need for further study of the interactions among lucinid hosts, their microbiomes, and their environment.


1998 ◽  
Vol 49 (4) ◽  
pp. 335 ◽  
Author(s):  
S. Y. Lee

Recent research on Indo–Pacific mangroves has confirmed the significant role played by grapsid crabs in the structure and function of these ecosystems. Through the feeding activities of the crabs, large proportions of organic matter production, i.e. mangrove leaves, are recycled within the forest. This initial retention of production in the forest refines earlier estimates of tidal export from the mangroves. Crab-processed organic matter could also form the basis of a coprophagous food chain involving small invertebrates, or be re-exported as micro-particulates. Differential consumption by crabs of mangrove propagules also affects mangrove community structure by diminishing the relative abundance of species whose propagules are preferred foods. Bioturbation by the crabs also results in changes in surface topography, particle size distribution and degree of aeration and, thus, the concentration of phytotoxins in the substratum. Such changes could affect growth and production of the mangroves. Growth and reproduction of the crabs may in turn be influenced by the associated mangrove species, mainly through the provision of food. The semi-terrestrial and air-breathing habit of the grapsid crabs probably makes them tolerant of deoxygenation caused by organic enrichment, but development of the landward mangroves will strongly affect survival of the crabs.


2005 ◽  
Vol 71 (6) ◽  
pp. 3137-3143 ◽  
Author(s):  
Aaron M. J. Law ◽  
Michael D. Aitken

ABSTRACT Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations (∼105 CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.


Sign in / Sign up

Export Citation Format

Share Document