scholarly journals Characterization of Bacterial Communities in Breeding Waters of Anopheles darlingi in Manaus in the Amazon Basin Malaria-Endemic Area

2019 ◽  
Vol 78 (4) ◽  
pp. 781-791 ◽  
Author(s):  
Louise K. J. Nilsson ◽  
Marta Rodrigues de Oliveira ◽  
Osvaldo Marinotti ◽  
Elerson Matos Rocha ◽  
Sebastian Håkansson ◽  
...  
2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Nutchavadee Vorasan ◽  
Wirichada Pan-Ngum ◽  
Podjanee Jittamala ◽  
Wanchai Maneeboonyang ◽  
Prasert Rukmanee ◽  
...  

LWT ◽  
2021 ◽  
Vol 147 ◽  
pp. 111579
Author(s):  
Creciana M. Endres ◽  
Ícaro Maia S. Castro ◽  
Laura D. Trevisol ◽  
Juliana M. Severo ◽  
Michele B. Mann ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Rute Ferreira ◽  
Rui Amado ◽  
Jorge Padrão ◽  
Vânia Ferreira ◽  
Nicolina M Dias ◽  
...  

ABSTRACT Bacteriophages (phages) are ubiquitous entities present in every conceivable habitat as a result of their bacterial parasitism. Their prevalence and impact in the ecology of bacterial communities and their ability to control pathogens make their characterization essential, particularly of new phages, improving knowledge and potential application. The isolation and characterization of a new lytic phage against Sphaerotilus natans strain DSM 6575, named vB_SnaP-R1 (SnaR1), is here described. Besides being the first sequenced genome of a Sphaerotilus natans infecting phage, 99% of its 41507 bp genome lacks homology with any other sequenced phage, revealing its uniqueness and previous lack of knowledge. Moreover, SnaR1 is the first Podoviridae phage described infecting this bacterium. Sphaerotilus natans is an important filamentous bacterium due to its deleterious effect on wastewater treatment plants (WWTP) and thus, phages may play a role as novel biotechnological tools against filamentous overgrowth in WWTP. The lytic spectrum of SnaR1 was restricted to its host strain, infecting only one out of three S. natans strains and infection assays revealed its ability to reduce bacterial loads. Results suggest SnaR1 as the prototype of a new phage genus and demonstrates its potential as a non-chemical alternative to reduce S. natans DSM 6575 cells.


2021 ◽  
Vol 7 (1) ◽  
pp. 54
Author(s):  
Eduardo Bagagli ◽  
Daniel Ricardo Matute ◽  
Hans Garcia Garces ◽  
Bernardo Guerra Tenório ◽  
Adalberto Garcia Garces ◽  
...  

Paracoccidioidomycosis is an endemic fungal disease to Latin America caused by at least five species-level genotypes of Paracoccidioides, named P. lutzii, P. brasiliensis (S1a and S1b populations), P. americana, P. restrepiensis, and P. venezuelensis. In this manuscript, we report on Paracoccidioides sp. sampling efforts in armadillos from two different areas in Brazil. We sequenced the genomes of seven Paracoccidioides isolates and used phylogenomics and populations genetics for genotyping. We found that P. brasiliensis and P. lutzii are both present in the Amazon region. Additionally, we identified two Paracoccidioides isolates that seem to be the result of admixture between divergent populations within P. brasiliensis sensu stricto. Both of these isolates were recovered from armadillos in a P. lutzii endemic area in Midwestern Brazil. Additionally, two isolates from human patients also show evidence of resulting from admixture. Our results suggest that the populations of P. brasiliensis sensu stricto exchange genes in nature. More generally, they suggest that population structure and admixture within species is an important source of variation for pathogenic fungi.


2017 ◽  
Vol 5 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Josiane V. Lopes ◽  
Érika M. Michalsky ◽  
Fabiana de O. Lara Silva ◽  
Ana Cristina V.M.R. Lima ◽  
Daniel M. de Avelar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document