Heterologously expressed fungal transient receptor potential channels retain mechanosensitivity in vitro and osmotic response in vivo

2005 ◽  
Vol 34 (5) ◽  
pp. 413-422 ◽  
Author(s):  
Xin-liang Zhou ◽  
Steven H. Loukin ◽  
Roberto Coria ◽  
Ching Kung ◽  
Yoshiro Saimi
2015 ◽  
Vol 35 (5) ◽  
Author(s):  
Kevin Morgan ◽  
Laura Rachel Sadofsky ◽  
Alyn Hugh Morice

Genetic variants of human transient receptor potential channels A1 and M8 expressed in human embryonic kidney HEK293 and SH-SY5Y cells were assayed using Ca2+ signalling. TRPA1 Y69C responded well. Poorly expressed variant signalling was enhanced by pre-treatment with tyrosine kinase inhibitor PP2 or Zn2+.


2019 ◽  
Vol 20 (3) ◽  
pp. 682 ◽  
Author(s):  
Pau Doñate-Macián ◽  
Elena Álvarez-Marimon ◽  
Francesc Sepulcre ◽  
José Vázquez-Ibar ◽  
Alex Perálvarez-Marín

Constitutive or regulated membrane protein trafficking is a key cell biology process. Transient receptor potential channels are somatosensory proteins in charge of detecting several physical and chemical stimuli, thus requiring fine vesicular trafficking. The membrane proximal or pre-S1 domain (MPD) is a highly conserved domain in transient receptor potential channels from the vanilloid (TRPV) subfamily. MPD shows traits corresponding to protein-protein and lipid-protein interactions, and protein regulatory regions. We have expressed MPD of TRPV1 and TRPV2 as green fluorescente protein (GFP)-fusion proteins to perform an in vitro biochemical and biophysical characterization. Pull-down experiments indicate that MPD recognizes and binds Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptors (SNARE). Synchrotron radiation scattering experiments show that this domain does not self-oligomerize. MPD interacts with phosphatidic acid (PA), a metabolite of the phospholipase D (PLD) pathway, in a specific manner as shown by lipid strips and Trp fluorescence quenching experiments. We show for the first time, to the best of our knowledge, the binding to PA of an N-terminus domain in TRPV channels. The presence of a PA binding domain in TRPV channels argues for putative PLD regulation. Findings in this study open new perspectives to understand the regulated and constitutive trafficking of TRPV channels exerted by protein-protein and lipid-protein interactions.


2020 ◽  
Author(s):  
Miriam Hernández-Morales ◽  
Victor Han ◽  
Richard H Kramer ◽  
Chunlei Liu

AbstractFeRIC (Ferritin iron Redistribution to Ion Channels) is a magnetogenetic technique that uses radiofrequency (RF) waves to activate the transient receptor potential channels, such as TRPV1 and TRPV4, coupled to cellular ferritins. In cells expressing ferritin-tagged TRPV, RF stimulation increases the cytosolic Ca2+ levels via a biochemical pathway. The interaction between RF and ferritin increases the free cytosolic iron level that in turn, triggers chemical reactions producing reactive oxygen species and oxidized lipids that activate the ferritin-tagged TRPV. In this pathway, it is expected that experimental factors that disturb the ferritin expression, the ferritin iron load, the TRPV functional expression, or the cellular redox state will impact the RF efficacy to activate ferritin-tagged TRPV. Here, three in vitro protocols were compared for using FeRIC to remotely activate ferritin-tagged TRPV. Further, several experimental factors were examined that either enhance or abolish the RF control of ferritin-tagged TRPV. The findings may help establish reproducible magnetogenetic experimental protocols.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 668
Author(s):  
Concetta Altamura ◽  
Maria Raffaella Greco ◽  
Maria Rosaria Carratù ◽  
Rosa Angela Cardone ◽  
Jean-François Desaphy

Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.


2017 ◽  
Vol 112 (3) ◽  
pp. 250a
Author(s):  
Young-Soo Kim ◽  
Chan Sik Hong ◽  
Sang Weon Lee ◽  
Joo Hyun Nam ◽  
Byung Joo Kim

2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


Physiology ◽  
2021 ◽  
Vol 36 (5) ◽  
pp. 292-306
Author(s):  
Heather A. Drummond

Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.


Sign in / Sign up

Export Citation Format

Share Document