Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet

2009 ◽  
Vol 84 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Yanping Wang ◽  
Nv Xu ◽  
Aodeng Xi ◽  
Zaheer Ahmed ◽  
Bin Zhang ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88231 ◽  
Author(s):  
Yunhye Kim ◽  
Sun Yoon ◽  
Sun Bok Lee ◽  
Hye Won Han ◽  
Hayoun Oh ◽  
...  

2012 ◽  
Vol 41 (7) ◽  
pp. 957-962 ◽  
Author(s):  
Jun-Hweok Choi ◽  
Hye-Sung Lee ◽  
Young-Eon Kim ◽  
Byoung-Mok Kim ◽  
In-Ho Kim ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
pp. 408-417
Author(s):  
Yin Liu ◽  
Shujuan Zheng ◽  
Jiale Cui ◽  
Tingting Guo ◽  
Jingtao Zhang

2021 ◽  
Author(s):  
Linfeng He ◽  
Cheng Wang ◽  
Yafang Zhang ◽  
Chaocheng Guo ◽  
Yan Wan ◽  
...  

Abstract BackgroundEmodin (EM) is one of bioactive components extracted from Rheum palmatum L. (Dahuang), which possesses numerous pharmacological activities including hypolipidemic effect. However, the potential action of EM on hyperlipidemia (HLP) remains unclear. Here, the theraputic effect of EM against HLP were investigated.MethodsIn this study, the hypolipidemic properties of EM were evaluated using high-cholesterol diet (HCD)-stimulated zebrafish larvae model. The body weight, body length and body mass index (BMI) was measured. The total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) as well as the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by corresponding assay kits. Tg (flil: eGFP) zebrafish were utilized to observe vascular cholesterol accumulation and Tg (mpx: eGFP) zebrafish to visualize and quantify neutrophil inflammation. The hepatic lipid deposition and hepatic histopathology were analyzed by Oil red O staining and H&E staining, respectively. Finally, the underlying mechanism of EM were investigated using real-time quantitative PCR (RT-qPCR) analysis to assess the gene levels of adenosine monophosphate-activated protein kinase alpha (AMPKα), sterol regulatory element binding protein 2 (SREBP-2), proprotein convertase subtilisin kexin 9 (PCSK9), low-density lipoprotein receptor (LDLR), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), adenosine triphosphate binding cassette transporter A1 (ABCA1) and adenosine triphosphate binding cassette transporter G1 (ABCG1).ResultsOur data indicated that EM reduced obesity of zebrafish as evidenced by the decrease in body weight, body length and BMI. EM significantly reduced TC, TG, and LDL-C, and increased HDL-C contents. Moreover, it displayed a prominent inhibitory effect on blood cholesterol accumulation, hepatic lipid accumulation, and neutrophil inflammation in vascular site. Additionally, EM improved the liver function through decreasing ALT and AST levels of zebrafish with HCD-induced hepatosteatosis. Further investigation showed that EM treatment attenuated lipid accumulation via upregulating the expression of AMPKα, LDLR, ABCA1 and ABCG1, and downregulating the expression of SREBP-2, PCSK9 and HMGCR.ConclusionTo conclude, EM alleviated lipid metabolism disorder symptoms caused by HCD via modulating AMPK/SREBP-2/PCSK9/LDLR pathway in larvae, suggesting that EM may be developed into hypolipidmic agent for treating lipid metabolism related diseases.


2019 ◽  
Vol 20 (2) ◽  
pp. 76-81
Author(s):  
Jhouharotul Faradisah ◽  
Diah Purwaningsari

Dyslipidemia is an abnormal lipid metabolism which may cause fat degeneration on hepatocytes cells and elevated triglyceride serum level. Dyslipidemia can be prevented by the consumption of high antioxidant food. Noni(Morinda citrifolia) contains many antioxidant such as flavanoid, kuersetin, tannin, and saponin, which are able to prohibit the elevation of ROS.This research is aimed to find out the effect of noni(Morinda citrifolia) extract in reducing the number of hepatocyte’s cells with fat degeneration and decreasing the triglyceride level which is elevated due to high cholesterol diet induction.In this study white rats divided randomly into 4 groups, control group (K-), high cholesterol diet induced group (K+), high cholesterol diet induced with 100 mg/Kg BW noni extract group (P1), high cholesterol diet induced with 200 mg/Kg BW noni extract group (P2). The result shows that noni  extract with dose 100 mg/Kg BW and  200 mg/Kg BWcan reduce the number of hepatocytes cells with fat degeneration (p= 0,026 and p=0,027) and decrease the level of triglyceride serum (p=0,036 and p=0,010).The conclusion is noni extract with dose 100 mg/KgBW reduces effectively  the number of hepatocyte’s cells with fat degeneration and decreases the level of triglyceride serum which increase because of high cholesterol diet. 


2013 ◽  
Vol 12 (1) ◽  
pp. 67 ◽  
Author(s):  
Xu Hu ◽  
Tao Wang ◽  
Wei Li ◽  
Feng Jin ◽  
Li Wang

Sign in / Sign up

Export Citation Format

Share Document