The LysR-type transcriptional regulator (LTTR) AlsR indirectly regulates expression of the Bacillus subtilis bdhA gene encoding 2,3-butanediol dehydrogenase

2013 ◽  
Vol 97 (16) ◽  
pp. 7307-7316 ◽  
Author(s):  
Rafael R. de Oliveira ◽  
Wayne L. Nicholson
2019 ◽  
Vol 47 (13) ◽  
pp. 6885-6899 ◽  
Author(s):  
Julia E Martin ◽  
My T Le ◽  
Nabin Bhattarai ◽  
Daiana A Capdevila ◽  
Jiangchuan Shen ◽  
...  

Abstract Maintaining manganese (Mn) homeostasis is important for the virulence of numerous bacteria. In the human respiratory pathogen Streptococcus pneumoniae, the Mn-specific importer PsaBCA, exporter MntE, and transcriptional regulator PsaR establish Mn homeostasis. In other bacteria, Mn homeostasis is controlled by yybP-ykoY family riboswitches. Here, we characterize a yybP-ykoY family riboswitch upstream of the mgtA gene encoding a PII-type ATPase in S. pneumoniae, suggested previously to function in Ca2+ efflux. We show that the mgtA riboswitch aptamer domain adopts a canonical yybP-ykoY structure containing a three-way junction that is compacted in the presence of Ca2+ or Mn2+ at a physiological Mg2+ concentration. Although Ca2+ binds to the RNA aptamer with higher affinity than Mn2+, in vitro activation of transcription read-through of mgtA by Mn2+ is much greater than by Ca2+. Consistent with this result, mgtA mRNA and protein levels increase ≈5-fold during cellular Mn stress, but only in genetic backgrounds of S. pneumoniae and Bacillus subtilis that exhibit Mn2+ sensitivity, revealing that this riboswitch functions as a failsafe ‘on’ signal to prevent Mn2+ toxicity in the presence of high cellular Mn2+. In addition, our results suggest that the S. pneumoniae yybP-ykoY riboswitch functions to regulate Ca2+ efflux under these conditions.


2008 ◽  
Vol 74 (22) ◽  
pp. 6832-6838 ◽  
Author(s):  
Wayne L. Nicholson

ABSTRACT Bacillus subtilis is capable of producing 2,3-butanediol from acetoin by fermentation, but to date, the gene encoding the enzyme responsible, acetoin reductase/2,3-butanediol dehydrogenase (AR/BDH), has remained unknown. A search of the B. subtilis genome database with the amino acid sequences of functional AR/BDHs from Saccharomyces cerevisiae and Bacillus cereus resulted in the identification of a highly similar protein encoded by the B. subtilis ydjL gene. A knockout strain carrying a ydjL::cat insertion mutation was constructed, which (i) abolished 2,3-butanediol production in early stationary phase, (ii) produced no detectable AR or BDH activity in vitro, and (iii) accumulated the precursor acetoin in early stationary phase. The ydjL::cat mutation also affected the kinetics of lactate but not acetate production during stationary-phase cultivation with glucose under oxygen limitation. A very small amount of 2,3-butanediol was detected in very-late-stationary-phase (96-hour) cultures of the ydjL::cat mutant, suggesting the existence of a second gene encoding a minor AR activity. From the data, it is proposed that the major AR/BDH-encoding gene ydjL be renamed bdhA.


1991 ◽  
Vol 11 (7) ◽  
pp. 3762-3772 ◽  
Author(s):  
T Lodi ◽  
B Guiard

Expression of the Saccharomyces cerevisiae gene encoding cytochrome b2 (EC 1.2.2.3), CYB2, was investigated by direct analysis of mRNA transcripts and by measurement of the expression of lacZ fused to the CYB2 control regions. These studies indicated that regulation of the CYB2 gene is subject to several metabolic controls at the transcriptional level: inhibition due to glucose fermentation, induction by lactate, and inhibition in anaerobiosis or in absence of heme biosynthesis. Furthermore, we have shown that the CYB2 promoter contains one cis negative regulatory region and two heme-dependent positive regions, one of which is controlled by the transcriptional regulator CYP1 (HAP1) which is involved in the modulation of the expression of several oxygen-regulated genes. The CYP1 (HAP1)-binding sequence was located by gel retardation and DNase I footprinting experiments and compared with the binding sequences previously characterized in detail (UAS1CYC1, UAS'CYP3 (CYC7), and UASCTT1).


DNA Sequence ◽  
1991 ◽  
Vol 1 (4) ◽  
pp. 251-261 ◽  
Author(s):  
P. Glaser ◽  
F. Kunst ◽  
M. Débarbouillé ◽  
A. Vertès ◽  
A. Danchin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document